版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
龙岩市重点中学2026届数学高二上期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线,点F为其左焦点,点B,若BF所在直线与双曲线的其中一条渐近线垂直,则该双曲线的离心率为()A. B.C. D.2.以下四个命题中,正确的是()A.若,则三点共线B.C.为直角三角形的充要条件是D.若为空间的一个基底,则构成空间的另一个基底3.若点,在抛物线上,是坐标原点,若等边三角形的面积为,则该抛物线的方程是()A. B.C. D.4.现有甲、乙、丙、丁、戊五位同学,分别带着A、B、C、D、E五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为()A. B.C. D.5.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上两人与下三人等,问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得之和与丙、丁、戊所得之和相同,且是甲、乙、丙、丁、戊所得以此为等差数列,问五人各得多少钱?”(“钱”是古代一种重量单位),这个问题中戊所得为()A.钱 B.钱C.钱 D.钱6.已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是A. B.C. D.7.已知椭圆,则它的短轴长为()A.2 B.4C.6 D.88.已知是抛物线的焦点,是抛物线的准线,点,连接交抛物线于点,,则的面积为()A.4 B.9C. D.9.已知双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,则双曲线的标准方程为()A.=1 B.=1C.=1 D.=110.一质点的运动方程为(位移单位:m,时间单位:s),则该质点在时的瞬时速度为()A.4 B.12C.15 D.2111.直线在轴上的截距为()A.3 B.C. D.12.已知圆与圆,则两圆的位置关系是()A.外切 B.内切C.相交 D.相离二、填空题:本题共4小题,每小题5分,共20分。13.已知点,,,则外接圆的圆心坐标为________14.已知点为椭圆上的动点,为圆的任意一条直径,则的最大值是__________15.椭圆与双曲线有公共焦点,设椭圆与双曲线在第一象限内交于点,椭圆与双曲线的离心率分别为为坐标原点,,则的取值范围是___________.16.根据如下样本数据34567402.5-0.50.5-2得到的回归方程为若,则的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为(1)求频率分布直方图中的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.18.(12分)如图,四棱锥的底面是正方形,PD⊥底面ABCD,M为BC的中点,(1)证明:;(2)设平面平面,求l与平面MND所成角的正弦值19.(12分)如图,在梯形中,,,平面,四边形为矩形,点为线段的中点,且(1)求证:平面平面;(2)若平面与平面所成锐二面角的余弦值为,则三棱锥F-ABC的体积为多少?20.(12分)已知函数()(1)讨论函数的单调区间;(2)若有两个极值点,(),且不等式恒成立,求实数m的取值范围21.(12分)已知圆与直线(1)若,直线与圆相交与,求弦长(2)若直线与圆无公共点求的取值范围22.(10分)命题:函数有意义;命题:实数满足.(1)当且为真时,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设出双曲线半焦距c,利用斜率坐标公式结合垂直关系列式计算作答.【详解】设双曲线半焦距为c,则,直线BF的斜率为,双曲线的渐近线为:,因直线BF与双曲线的一条渐近线垂直,则有,即,于是得,而,解得,所以双曲线的离心率为.故选:C2、D【解析】利用向量共线的推论可判断A,利用数量积的定义可判断B,利用充要条件的概念可判断C,利用基底的概念可判断D.【详解】对于A,若,,所以三点不共线,故A错误;对于B,因为,故B错误;对于C,由可推出为直角三角形,由为直角三角形,推不出,所以为直角三角形的充分不必要条件是,故C错误;对于D,若为空间的一个基底,则不共面,若不能构成空间的一个基底,设,整理可得,即共面,与不共面矛盾,所以能构成空间的另一个基底,故D正确.故选:D.3、A【解析】根据等边三角形的面积求得边长,根据角度求得点的坐标,代入抛物线方程求得的值.【详解】设等边三角形的边长为,则,解得根据抛物线的对称性可知,且,设点在轴上方,则点的坐标为,即,将代入抛物线方程得,解得,故抛物线方程为故选:A4、D【解析】利用排列组合知识求出每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的情况个数,以及五人抽取五个礼物的总情况,两者相除即可.【详解】先从五人中抽取一人,恰好拿到自己礼物,有种情况,接下来的四人分为两种情况,一种是两两一对,两个人都拿到对方的礼物,有种情况,另一种是四个人都拿到另外一个人的礼物,不是两两一对,都拿到对方的情况,由种情况,综上:共有种情况,而五人抽五个礼物总数为种情况,故恰有一位同学拿到自己礼物的概率为.故选:D5、D【解析】根据题意将实际问题转化为等差数列的问题即可解决【详解】解:由题意,可设甲、乙、丙、丁、戊五人分得的钱分别为,,,,则,,,,成等差数列,设公差为,整理上面两个算式,得:,解得,故选:6、B【解析】利用函数的奇偶性将函数转化为f(M)≤f(N)的形式,再利用单调性脱去对应法则f,转化为一般的二次不等式求解即可【详解】由于,,则f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函数f(x)为奇函数故原不等式f(a﹣1)+f(2a2)≤0,可转化为f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函数f(x)单调递增,则由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故选B【点睛】本题考查了函数的奇偶性和单调性的判定及应用,考查了不等式的解法,属于中档题7、B【解析】根据椭圆短轴长的定义进行求解即可.【详解】由椭圆的标准方程可知:,所以该椭圆的短轴长为,故选:B8、D【解析】根据题意求得抛物线的方程为和焦点为,由,得到为的中点,得到,代入抛物线方程,求得,进而求得的面积.【详解】由直线是抛物线的准线,可得,即,所以抛物线的方程为,其焦点为,因为,可得可得三点共线,且为的中点,又因为,,所以,将点代入抛物线,可得,所以的面积为.故选:D.9、D【解析】根据双曲线的性质求解即可.【详解】双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,可得a=4,b=5,所以双曲线方程为:=1.故选:D.10、B【解析】由瞬时变化率的定义,代入公式求解计算.【详解】由题意,该质点在时的瞬时速度为.故选:B11、A【解析】把直线方程由一般式化成斜截式,即可得到直线在轴上的截距.【详解】由,可得,则直线在轴上的截距为3.故选:A12、A【解析】求得两圆的圆心和半径,再根据圆心距与半径之和半径之差的关系,即可判断位置关系.【详解】对圆,其圆心,半径;对圆,其圆心,半径;又,故两圆外切.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求得的垂直平分线的方程,在求得垂直平分线的交点,则问题得解.【详解】线段中点坐标为,线段斜率为,所以线段垂直平分线的斜率为,故线段的垂直平分线方程为,即.线段中点坐标为,线段斜率为,所以线段垂直平分线的斜率为,故线段的垂直平分线方程为,即.由.所以外接圆的圆心坐标为.故答案为:.【点睛】本题考查直线方程的求解,直线交点坐标的求解,属综合基础题.14、【解析】设点,则且,计算得出,再利用二次函数的基本性质即可求得的最大值.【详解】解:圆的圆心为,半径长为,设点,由点为椭圆上的动点,可得:且,由为圆的任意一条直径可得:,,,,,当时,取得最大值,即.故答案为:.15、【解析】根据椭圆和双曲线得定义求得,再根据,可得,从而有,求出的范围,根据,结合基本不等式即可得出答案.【详解】解:设,则有,所以,即,又因为,所以,所以,即,则,由,得,所以,所以,则,由,得,因为,当且仅当,即时,取等号,因为,所以,所以,即,所以的取值范围是.故答案为:.16、-1.4##【解析】分别求出的值,即得到样本中心点,根据样本中心点一定在回归直线上,可求得答案.【详解】,则得到样本中心点为,因为样本中心点一定在回归直线上,故,解得,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.006;(2);(3).【解析】(1)在频率分布直方图中,由频率总和即所有矩形面积之和为,可求;(2)在频率分布直方图中先求出50名受访职工评分不低于80的频率为,由频率与概率关系可得该部门评分不低于80的概率的估计值为;(3)受访职工评分在[50,60)的有3人,记为,受访职工评分在[40,50)的有2人,记为,列出从这5人中选出两人所有基本事件,即可求相应的概率.【详解】(1)因为,所以(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为,所以该企业职工对该部门评分不低于80的概率的估计值为(3)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为;受访职工评分在[40,50)的有:50×0.004×10=2(人),即为.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是又因为所抽取2人的评分都在[40,50)的结果有1种,即,故所求的概率为【点睛】本题考查频率分布直方图、概率与频率关系、古典概型,属中档题;利用频率分布直方图解题的时,注意其表达的意义,同时要理解频率是概率的估计值这一基础知识;在利用古典概型解题时,要注意列出所有的基本事件,千万不可出现重、漏的情况.18、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,利用向量法证得.(2)利用向量法求得与平面所成角的正弦值.【小问1详解】∵PD⊥平面ABCD,,以点D为坐标原点,DA,DC,DP所在直线分别为x,y,z轴建立如图所示的空间直角坐标系Dxyz,则D(0,0,0),N(,0,),P(0,0,2),M(1,2,0)所以,,所以,所以.【小问2详解】由正方形ABCD得,CD//AB,∵平面PAB,平面PAB,∴CD//平面PAB;又∵平面PCD,平面平面∴CD//l;于是CD与平面MND所成的角即为l与平面MND所成的角由(1)知,设平面MND的一个法向量,则,取,则,于是是平面MND的一个法向量,因为,设l与平面MND所成角为,则19、(1)证明见解析;(2)【解析】(1)先证线面垂直,再证面面垂直即可解决;(2)建立空间直角坐标系,以向量法去求平面与平面所成锐二面角的余弦值,列方程解得的长度,即可求得三棱锥F-ABC的体积.【小问1详解】在梯形中,,,,所以,,又,所以,所以,又所以,即又平面,平面,所以,又,,平面,所以平面,即平面又平面,则平面平面【小问2详解】由(1)知,,两两垂直,以为坐标原点,分别以直线,,为轴、轴、轴建立空间直角坐标系因为,,所以,令则,,,所以,设为平面的一个法向量,由,得解得,取,则,又是平面的一个法向量.设平面与平面所成锐二面角为,则,即解之得,又,故即20、(1)时,在递增,时,在递减,在递增(2)【解析】(1)求出函数导数,分和两种情况讨论可得单调性;(2)根据导数可得有两个极值点等价于有两不等实根,则可得出,进而得出,可得恒成立,等价于,构造函数求出最小值即可.【小问1详解】的定义域是,,①时,,则,在递增;②时,令,解得,令,解得,故在递减,在递增.综上,时,在递增时,在递减,在递增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年百色职业学院单招职业适应性测试参考题库及答案解析
- 2026年天津铁道职业技术学院单招职业适应性测试参考题库及答案解析
- 2026年六安职业技术学院单招职业适应性测试备考试题及答案解析
- 2026年宜宾职业技术学院单招职业适应性考试备考试题及答案解析
- 2026年岳阳职业技术学院单招职业适应性测试备考试题及答案解析
- 2026年河南医学高等专科学校单招职业适应性考试模拟试题及答案解析
- 期末考试动员会发言稿6篇
- 2025年云南省楚雄州中考数学一模试卷(含答案)
- 2026年曲靖医学高等专科学校单招职业适应性测试模拟试题及答案解析
- 2026年江西航空职业技术学院单招职业适应性考试模拟试题及答案解析
- 对昆明机场地区天气气候特征的一些综述分析
- 化工厂新员工安全培训教材DOC
- YS/T 277-2009氧化亚镍
- YS/T 1109-2016有机硅用硅粉
- 教师的信仰与价值(合师院讲座)
- GB/T 10609.2-2009技术制图明细栏
- 汽车制造工程的核心技术及四大工艺流程开发体系-
- 上海地理高二等级考 第7讲 岩石和地貌1
- 安徽省合肥市各县区乡镇行政村村庄村名明细及行政区划代码
- 视神经胶质瘤-影像科
- 公园绿化养护景观绿化维护项目迎接重大节会活动的保障措施
评论
0/150
提交评论