版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省辽河油田第二中学2026届高一数学第一学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若命题“”是命题“”的充分不必要条件,则的取值范围是()A. B.C. D.2.某几何体的三视图如图所示(图中小正方形网格的边长为),则该几何体的体积是A. B.C. D.3.下列区间中,函数单调递增的区间是()A. B.C. D.4.已知,,三点,点使直线,且,则点D的坐标是(
)A. B.C. D.5.若动点.分别在直线和上移动,则线段的中点到原点的距离的最小值为()A. B.C. D.6.与函数的图象不相交的一条直线是()A. B.C. D.7.已知,,,则a,b,c的大小关系正确的是()A.a>b>c B.b>c>aC.c>b>a D.c>a>b8.若定义在上的函数的值域为,则取值范围是()A. B.C. D.9.已知向量,,且,则A. B.C. D.10.设,且,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.定义在上的偶函数满足:当时,,则______12.设一扇形的弧长为4cm,面积为4cm2,则这个扇形的圆心角的弧度数是_____.13.在矩形ABCD中,AB=2,AD=1.设①当时,t=___________;②若,则t的最大值是___________14.给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于∀x∈A,∃y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;③y=lgx.其中,具有性质P的函数的序号是_____15.已知函数,则函数的值域为______16.函数在上存在零点,则实数a的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知对数函数.(1)若函数,讨论函数的单调性;(2)对于(1)中的函数,若,不等式的解集非空,求实数的取值范围.18.某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元,销售量就减少个,为了获得最大利润,则此商品的最佳售价应为多少?19.已知是定义在上的奇函数.(1)求实数和的值;(2)根据单调性的定义证明:在定义域上为增函数.20.函数的部分图象如图:(1)求解析式;(2)求函数的单调增区间.21.已知集合,集合.(1)求.(2)求,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】解不等式得,进而根据题意得集合是集合的真子集,再根据集合关系求解即可.【详解】解:解不等式得,因为命题“”是命题“”的充分不必要条件,所以集合是集合的真子集,所以故选:C2、A【解析】利用已知条件,画出几何体的直观图,利用三视图的数据求解几何体的体积即可【详解】由题意可知几何体的直观图如图:是直四棱柱,底面是直角梯形,上底为:1,下底为2,高为2,棱柱的高为2,几何体的体积为:V6故选A【点睛】本题考查几何体的直观图与三视图的关系,考查空间想象能力以及计算能力3、A【解析】解不等式,利用赋值法可得出结论.【详解】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,,CD选项均不满足条件.故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数4、D【解析】先设点D的坐标,由题中条件,且,建立D点横纵坐标的方程,解方程即可求出结果.【详解】设点,则由题意可得:,解得,所以D点坐标为.【点睛】本题主要考查平面向量,属于基础题型.5、C【解析】先分析出M的轨迹,再求到原点的距离的最小值.【详解】由题意可知:M点的轨迹为平行于直线和且到、距离相等的直线l,故其方程为:,故到原点的距离的最小值为.故选:C【点睛】解析几何中与动点有关的最值问题一般的求解思路:①几何法:利用图形作出对应的线段,利用几何法求最值;②代数法:把待求量的函数表示出来,利用函数求最值.6、C【解析】由题意求函数的定义域,即可求得与函数图象不相交的直线.【详解】函数的定义域是,解得:,当时,,函数的图象不相交的一条直线是.故选:C【点睛】本题考查正切函数的定义域,属于简单题型.7、C【解析】根据对数函数的单调性和中间数可得正确的选项.【详解】因为,故即,而,故,即,而,故,故即,故,故选:C8、C【解析】作函数图象,观察图象确定m的范围.【详解】函数的图象是对称轴为,顶点为的开口向上的抛物线,当时,;当时,.作其图象,如图所示:又函数在上值域为,所以观察图象可得∴取值范围是,故选:C.9、D【解析】分析:直接利用向量垂直的坐标表示得到m的方程,即得m的值.详解:∵,∴,故答案为D.点睛:(1)本题主要考查向量垂直的坐标表示,意在考查学生对该这些基础知识的掌握水平.(2)设=,=,则10、C【解析】将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.二、填空题:本大题共6小题,每小题5分,共30分。11、12【解析】根据偶函数定义,结合时的函数解析式,代值计算即可.【详解】因为是定义在上的偶函数,故可得,又当时,,故可得,综上所述:.故答案为:.12、2【解析】设扇形的半径为r,圆心角的弧度数为,由弧度制下扇形的弧长与面积计算公式可得,,解得半径r=2,圆心角的弧度数,所以答案为2考点:弧度制下扇形的弧长与面积计算公式13、①.0②.【解析】利用坐标法可得,结合条件及完全平方数的最值即得.【详解】由题可建立平面直角坐标系,则,∴,∴,∴当时,,因为,要使t最大,可取,即时,t取得最大值是.故答案为:0;.14、①③【解析】A即为函数的定义域,B即为函数的值域,求出每个函数的定义域及值域,直接判断即可【详解】对①,A=(﹣∞,0)∪(0,+∞),B=(﹣∞,0)∪(0,+∞),显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;对②,A=R,B=(0,+∞),当x>0时,不存在y∈B,使得x+y=0成立,即不具有性质P;对③,A=(0,+∞),B=R,显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;故答案为:①③【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题15、【解析】先求的的单调性和值域,然后代入中求得函数的值域.【详解】由于为上的增函数,而,,即,对,由于为增函数,故,即函数的值域为,也即.【点睛】本小题主要考查函数的单调性,考查函数的值域的求法,考查复合函数值域的求法.属于中档题.16、【解析】由可得,求出在上的值域,则实数a的取值范围可求【详解】由,得,即由,得,又∵函数在上存在零点,即实数a的取值范围是故答案为【点睛】本题考查函数零点的判定,考查函数值域的求法,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2).【解析】(1)由对数函数的定义,得到的值,进而得到函数的解析式,再根据复合函数的单调性,即可求解函数的单调性.(2)不等式的解集非空,得,利用函数的单调性,求得函数的最小值,即可求得实数的取值范围.【详解】(1)由题中可知:,解得:,所以函数的解析式,∵,∴,∴,即的定义域为,由于,令则:由对称轴可知,在单调递增,在单调递减;又因为在单调递增,故单调递增区间,单调递减区间为.(2)不等式的解集非空,所以,由(1)知,当时,函数单调递增区间,单调递减区间为,又,所以,所以,,所以实数的取值范围.18、此商品的最佳售价应为元.【解析】设最佳售价为元,最大利润为元,当时,取得最大值,所以应定价为元19、(1);(2)见详解2.【解析】(1)由可得,再求值.(2)设,作差与零比较.【小问1详解】因为是定义在上的奇函数,所以,,,【小问2详解】设,则,,,,所以,,故在定义域上为增函数.20、(1)(2)【解析】(1)由函数的最大值和最小值求A;由周期解得.由,解得:.即可求得解析式;(2)直接利用复合函数单调性“同增异减”列不等式,即可求得单增区间.小问1详解】由函数的最大值为2.最小值-2.可得A=2;由从到为函数的一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国移动通信嵊泗分公司招聘备考题库及一套答案详解
- 河源市民政局2025年公开招聘编外人员备考题库含答案详解
- 2025西安鄠邑区秦渡中心卫生院牛东分院招聘考试核心试题及答案解析
- 武宁县人社局现面向社会公开招聘劳务派遣工作人员2名考试核心题库及答案解析
- 2025四川广元市人民检察院招聘警务辅助人员5人考试核心试题及答案解析
- 太原新希望双语学校元旦招聘备考题库必考题
- 中国科学院山西煤炭化学研究所2025年度编制外人员招聘(908组)备考题库必考题
- 上海外国语大学国际教育学院招聘备考题库附答案
- 2026年福建省邵武第一中学第一批自主招聘新任教师6人考试题库附答案
- 任丘市职教中心招聘机械类代课教师备考题库及答案1套
- 2026年动物检疫检验员考试试题题库及答案
- 中国淋巴瘤治疗指南(2025年版)
- 2025年云南省人民检察院聘用制书记员招聘(22人)考试笔试模拟试题及答案解析
- 疗伤旅馆商业计划书
- 临床肿瘤诊疗核心技巧
- 购买电影票合同范本
- 2025西部机场集团航空物流有限公司招聘考试笔试备考题库及答案解析
- 2025年广西公需科目答案6卷
- 生化检测项目原理及临床意义
- 玉米秸秆饲料销售合同
- DGTJ08-10-2022 城镇天然气管道工程技术标准
评论
0/150
提交评论