版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届黑龙江省大庆市让胡路区铁人中学高一上数学期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点所在的区间为()A.(-1,0) B.(0,)C.(,1) D.(1,2)2.命题“,”否定是()A., B.,C., D.,3.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积可能等于A. B.C. D.24.已知,则等于()A.1 B.2C.3 D.65.直三棱柱中,若,则异面直线与所成角的余弦值为A.0 B.C. D.6.已知函数对于任意两个不相等实数,都有成立,则实数的取值范围是()A. B.C. D.7.已知点M与两个定点O(0,0),A(6,0)的距离之比为,则点M的轨迹所包围的图形的面积为()A. B.C. D.8.已知非空集合,则满足条件的集合的个数是()A.1 B.2C.3 D.49.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单的讲就是对于满足一定条件的连续函数,存在点,使得,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是()A. B.C. D.10.要得到的图像,只需将函数的图像()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位二、填空题:本大题共6小题,每小题5分,共30分。11.函数(且)的图象过定点___________.12.已知函数,,若不等式恰有两个整数解,则实数的取值范围是________13.已知函数是定义在上的奇函数,且当时,,则的值为__________14.在上,满足的取值范围是______.15.计算:__________16.化简___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,不等式解集为,设(1)若存在,使不等式成立,求实数的取值范围;(2)若方程有三个不同的实数解,求实数的取值范围18.已知函数.(1)求函数的最小正周期和单调递增区间;(2)若当时,求的最大值和最小值及相应的取值.19.定义在(-1,1)上的奇函数为减函数,且,求实数a的取值范围.20.在三棱柱中,侧棱底面,点是的中点.(1)求证:;(2)求证:;(3)求直线与平面所成的角的正切值.21.已知函数满足:.(1)证明:;(2)对满足已知的任意值,都有成立,求m的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】应用零点存在性定理判断零点所在的区间即可.【详解】由解析式可知:,∴零点所在的区间为.故选:C.2、B【解析】根据命题的否定的定义判断.【详解】命题“,”的否定是:,故选:B3、C【解析】如果主视图是从垂直于正方体的面看过去,则其面积为1;如果斜对着正方体的某表面看,其面积就变大,最大时,(是正对着正方体某竖着的棱看),面积为以上表面的对角线为长,以棱长为宽的长方形,其面积为,可得主视图面积最小是1,最大是,故选C.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.4、A【解析】利用对数和指数互化,可得,,再利用即可求解.【详解】由得:,,所以,故选:A5、A【解析】连接,在正方形中,,又直三棱柱中,,即,所以面.所以,所以面,面,所以,即异面直线与所成角为90°,所以余弦值为0.故选A.6、B【解析】由题可得函数为减函数,根据单调性可求解参数的范围.【详解】由题可得,函数为单调递减函数,当时,若单减,则对称轴,得:,当时,若单减,则,在分界点处,应满足,即,综上:故选:B7、B【解析】设M(x,y),由点M与两个定点O(0,0),A(3,0)的距离之比为,得:,整理得:(x+2)2+y2=16∴点M的轨迹方程是圆(x+2)2+y2=16.圆的半径为:4,所求轨迹的面积为:16π故答案为B.8、C【解析】由题意可知,集合为集合的子集,求出集合,利用集合的子集个数公式可求得结果.【详解】,所以满足条件的集合可以为,共3个,故选:C.【点睛】本题考查集合子集个数的计算,考查计算能力,属于基础题.9、C【解析】根据已知定义,将问题转化为方程有解,然后逐项进行求解并判断即可.【详解】根据定义可知:若有不动点,则有解.A.令,所以,此时无解,故不是“不动点”函数;B.令,此时无解,,所以不是“不动点”函数;C.当时,令,所以或,所以“不动点”函数;D.令即,此时无解,所以不是“不动点”函数.故选:C.10、A【解析】化简函数,即可判断.【详解】,需将函数的图象向左平移个单位.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由可得图像所过的定点.【详解】当时,,故的图像过定点.填.【点睛】所谓含参数的函数的图像过定点,是指若是与参数无关的常数,则函数的图像必过.我们也可以根据图像的平移把复杂函数的图像所过的定点归结为常见函数的图像所过的定点(两个定点之间有平移关系).12、.【解析】因为,所以即的取值范围是.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等13、-1【解析】因为为奇函数,故,故填.14、【解析】结合正弦函数图象可知时,结合的范围可得到结果.【详解】本题正确结果:【点睛】本题考查根据三角函数值的范围求解角所处的范围,关键是能够熟练应用正弦函数图象得到对应的自变量的取值集合.15、【解析】.故答案为.点睛:(1)任何非零实数的零次幂等于1;(2)当,则;(3).16、【解析】利用向量的加法运算,即可得到答案;【详解】,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由不等式的解集为可知是方程的两个根,即可求出,根据的单调性求出其在的最大值,即可得出m的范围;(2)方程可化为,令,则有两个不同的实数解,,根据函数性质可列出不等式求解.【详解】(1)∵不等式的解集为∴,是方程的两个根∴,解得.∴则∴存在,使不等式成立,等价于在上有解,而在时单调递增,∴∴的取值范围为(2)原方程可化为令,则,则有两个不同的实数解,,其中,,或,记,则①,解得或②,不等式组②无实数解∴实数的取值范围为【点睛】本题考查一元二次不等式的解集与方程的根的关系,考查函数的单调性,考查利用函数性质解决方程解的情况,属于较难题.18、(1)最小正周期为,(2)最小值为-1,的值为,最大值为2,的值为【解析】(1)利用周期公式可得最小正周期,由的单调递增区间可得的单调递增区间;(2)由得,当,即时,函数取得最大值,当,即时,函数取得最小值可得答案.【小问1详解】函数的最小正周期为,令因为的单调递增区间是,由,解得,所以,函数的单调递增区间是.【小问2详解】令,因为,所以,即,当,即时,函数取得最大值,因此的最大值为,此时自变量的值为;当,即时,函数取得最小值,因此的最小值为,此时自变量的值为.19、【解析】结合奇函数性质以及单调性,去掉外层函数,变成一元二次不等式进行求解.【详解】由题即根据奇函数定义可知原不等式为又因为单调递减函数,故,解得或又因为函数定义域为故,解得,所以综上得的范围为.20、(1)见解析(2)见解析(3)【解析】【试题分析】(1)依据题设运用线面平行的判定定理进行分析推证;(2)借助题设条件先证明线面垂直,再运用线面垂直的性质定理进行推证;(3)先运用线面角的定义找出线面角,再运用解三角形求其正切值:(1)如图,令分别为的中点,又∵(2)证明:∠⊥在直三棱柱中,⊥又⊥平面,又⊥(3)由(2)得AC⊥平面∴直线是斜线在平面上的射影∴是直线与平面所成的角.在中,∴,即求直线与平面的正切值为.点睛:立体几何是高中数学重点内容之一,也是高考重点考查的考点和热点.这类问题的设置目的是考查空间线面的位置关系及角度距离的计算.求解本题第一问时,直接依据题设运用线面平行的判定定理进行分析推证;求解第二问,充分借助题设条件先证明线面垂直,再运用线面垂直的性质定理从而使得问题获证;求解第三问时,先运用线面角的定义找出线面角,再运用解三角形求其正切值使得问题获解21、(1)证明见解析;(2).【解析】(1)由二次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国家事业单位招聘2024中国人民大学人事处招聘1人笔试历年参考题库典型考点附带答案详解(3卷合一)
- 云南省2024云南文山州林业和草原局直属事业单位紧缺岗位招聘(3人)笔试历年参考题库典型考点附带答案详解(3卷合一)
- 2026年内蒙古单招旅游管理专业中职生技能经典题含答案含导游词创作
- 2026年青海单招短视频制作与运营专业基础题库含答案脚本运营
- 2026年内蒙古单招机电一体化技术专业技能模拟卷含故障排除题
- 2026年北京单招职教高考过渡版经典题含答案文化素质部分
- 2026年广东单招电子商务专业模拟卷含答案直播电商方向
- 2026年云南单招工业机器人专业中职生技能经典题含编程基础
- 2026年山西单招机电一体化技术专业技能模拟卷含故障排除题
- 2026年海南单招医卫大类中职生专业技能模拟题含答案护理方向
- 2026年度财务总监工作计划(3篇)
- 2025美国心脏协会心肺复苏(CPR)与心血管急救(ECC)指南解读课件
- 职业毕业就业生涯规划书
- 腹腔出血课件
- 惊恐障碍的认知行为干预与药物协同
- 消化内科2025年终工作总结及2026年工作计划汇报
- 2025年国家统计局齐齐哈尔调查队公开招聘公益性岗位5人笔试考试备考试题及答案解析
- 啦啦操课件教学课件
- 2025年及未来5年市场数据中国抛光液市场运行态势及行业发展前景预测报告
- 2026年网络安全法培训课件
- 2025年全国新能源电力现货交易价格趋势报告
评论
0/150
提交评论