江苏省涟水郑梁梅高级中学2026届数学高一上期末统考试题含解析_第1页
江苏省涟水郑梁梅高级中学2026届数学高一上期末统考试题含解析_第2页
江苏省涟水郑梁梅高级中学2026届数学高一上期末统考试题含解析_第3页
江苏省涟水郑梁梅高级中学2026届数学高一上期末统考试题含解析_第4页
江苏省涟水郑梁梅高级中学2026届数学高一上期末统考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省涟水郑梁梅高级中学2026届数学高一上期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集为,则函数的图像大致为()A. B.C. D.2.设,,,则a、b、c的大小关系是A. B.C. D.3.已知x,y是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.某三棱锥的三视图如图所示,则该三棱锥的体积是A. B.C. D.5.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则6.如图,在平面四边形中,,,,将其沿对角线折成四面体,使平面平面,若四面体顶点在同一球面上,则该球的表面积为()A. B.C. D.7.已知函数的图象关于直线对称,且,则的最小值为()A. B.C. D.8.下列函数中,是幂函数的是()A. B.C. D.9.直三棱柱中,若,则异面直线与所成角的余弦值为A.0 B.C. D.10.若关于的方程有且仅有一个实根,则实数的值为()A3或-1 B.3C.3或-2 D.-1二、填空题:本大题共6小题,每小题5分,共30分。11.函数的递减区间是__________.12.已知,,则的值为13.已知函数,若,则实数的取值范围为______.14.已知函数,则满足的的取值范围是___________.15.已知定义在上的函数,满足不等式,则的取值范围是______16.设一扇形的弧长为4cm,面积为4cm2,则这个扇形的圆心角的弧度数是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.有一批材料,可以建成长为240米的围墙.如图,如果用材料在一面靠墙的地方围成一块矩形的场地,中间用同样材料隔成三个相等面积的矩形,怎样围法才可取得最大的面积?并求此面积.18.设向量的夹角为且如果(1)证明:三点共线.(2)试确定实数的值,使的取值满足向量与向量垂直.19.已知函数,,g(x)与f(x)互为反函数.(1)若函数在区间内有最小值,求实数m的取值范围;(2)若函数y=h(g(x))在区间(1,2)内有唯一零点,求实数m的取值范围.20.某学校有1200名学生,随机抽出300名进行调查研究,调查者设计了一个随机化装置,这是一个装有大小、形状和质量完全相同的10个红球,10个绿球和10个白球的袋子.调查中有两个问题:问题1:你的阳历生日月份是不是奇数?问题2:你是否抽烟?每个被调查者随机从袋中摸出1个球(摸出后再放回袋中).若摸到红球就如实回答第一个问题,若摸到绿球,则不回答任何问题;若摸到白球,则如实回答第二个问题.所有回答“是”的调查者只需往一个盒子中放一个小石子,回答“否”的被调查者什么也不用做.最后收集回来53个小石子,估计该学校吸烟的人数有多少?21.如果函数满足:对定义域内的所有,存在常数,,都有,那么称是“中心对称函数”,对称中心是点.(1)证明点是函数的对称中心;(2)已知函数(且,)的对称中心是点.①求实数的值;②若存在,使得在上的值域为,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据不等式的解集求出参数,从而可得,根据该形式可得正确的选项【详解】因为不等式的解集为,故,故,故,令,解得或,故抛物线开口向下,与轴的交点的横坐标为,故选:C2、D【解析】根据指数函数与对数函数性质知,,,可比较大小,【详解】解:,,;故选D【点睛】在比较幂或对数大小时,一般利用指数函数或对数函数的单调性,有时还需要借助中间值与中间值比较大小,如0,1等等3、C【解析】由充要条件的定义求解即可【详解】因为,若,则,若,则,即,所以,即“”是“”的充要条件,故选:C.4、B【解析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则,选B.【考点定位】三视图与几何体的体积5、D【解析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当

时,存在,,故B项错误;C项,可能相交或垂直,当

时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.6、B【解析】由题意,的中点就是球心,求出球的半径,即可得到球的表面积【详解】解:由题意,四面体顶点在同一个球面上,和都是直角三角形,所以的中点就是球心,所以,球的半径为:,所以球的表面积为:故选B【点睛】本题是基础题,考查四面体的外接球的表面积的求法,找出外接球的球心,是解题的关键,考查计算能力,空间想象能力7、D【解析】由辅助角公式可得,由函数关于直线对称,可得,可取.从而可得,由此结合,可得一个最大值一个最小值,从而可得结果.【详解】,,函数关于直线对称,,即,,故可取故,,即可得:,故可令,,,,即,,其中,,,故选D【点睛】本题主要考查辅助角公式的应用、三角函数的最值、三角函数的对称性,转化与划归思想的应用,属于难题.由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.8、B【解析】根据幂函数的定义辨析即可【详解】根据幂函数的形式可判断B正确,A为一次函数,C为指数函数,D为对数函数故选:B9、A【解析】连接,在正方形中,,又直三棱柱中,,即,所以面.所以,所以面,面,所以,即异面直线与所成角为90°,所以余弦值为0.故选A.10、B【解析】令,根据定义,可得的奇偶性,根据题意,可得,可求得值,分析讨论,即可得答案.【详解】令,则,所以为偶函数,图象关于y轴对称,因为原方程仅有一个实根,所以有且仅有一个根,即,所以,解得或-1,当时,,,,不满足仅有一个实数根,故舍去,当时,,当时,由复合函数的单调性知是增函数,所以,当时,,所以,所以仅有,满足题意,综上:.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求出函数的定义域,再根据复合函数单调性“同增异减”原则求出函数的单调递减区间即可得出答案【详解】解:意可知,解得,所以的定义域是,令,对称轴是,在上是增函数,在是减函数,又在定义域上是增函数,是和的复合函数,的单调递减区间是,故答案为:【点睛】本题主要考查对数型复合函数的单调区间,属于基础题12、3【解析】,故答案为3.13、或【解析】令,分析出函数为上的减函数且为奇函数,将所求不等式变形为,可得出关于的不等式,解之即可.【详解】令,对任意的,,故函数的定义域为,因为,则,所以,函数为奇函数,当时,令,由于函数和在上均为减函数,故函数在上也为减函数,因为函数在上为增函数,故函数在上为减函数,所以,函数在上也为减函数,因为函数在上连续,则在上为减函数,由可得,即,所以,,即,解得或.故答案为:或.14、【解析】∵在x∈(0,+∞)上是减函数,f(1)=0,∴0<3-x<1,解得2<x<3.15、【解析】观察函数的解析式,推断函数的性质,借助函数性质解不等式【详解】令,则,得,即函数的图像关于中心对称,且单调递增,不等式可化为,即,得,解集为【点睛】利用函数解决不等式问题,关键是根据不等式构造适当的函数,通过研究函数的单调性等性质解决问题16、2【解析】设扇形的半径为r,圆心角的弧度数为,由弧度制下扇形的弧长与面积计算公式可得,,解得半径r=2,圆心角的弧度数,所以答案为2考点:弧度制下扇形的弧长与面积计算公式三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、当面积相等的小矩形的长为时,矩形面积最大,【解析】设每个小矩形的长为,宽为,依题意可知,代入矩形的面积公式,根据基本不等式即可求得矩形面积的最大值.【详解】设每个小矩形的长为,宽为,依题意可知,,当且仅当取等号,所以时,.【点睛】本题主要考查函数最值的应用,考查了学生分析问题和解决问题的能力.18、(1)见解析(2)【解析】(1)利用向量的加法求出,据此,结合,可以得到与的关系;(2)根据题意可得,再结合的夹角为,且,即可得到关于的方程,求解即可.试题解析:(1)即共线,有公共点三点共线.(2)且解得19、(1);(2).【解析】(1)根据二次函数的性质研究情况下的单调性和值域,根据对数复合函数的单调性及其开区间最值,列不等式求参数范围.(2)将问题化为在内有唯一零点,利用二次函数的性质求参数范围即可.【小问1详解】由题设,,,所以在定义域上递增,在上递减,在上递增,又在内有最小值,当,即时,在上递减,上递增,此时的值域为,则;所以,可得;当,即时,在上递减,上递增,此时是值域上的一个子区间,则;所以开区间上不存在最值.综上,.【小问2详解】由,则,要使在(1,2)内有唯一零点,所以在内有唯一零点,又开口向上且对称轴为,所以,可得.20、36【解析】由题意可知,每个学生从口袋中摸出1个红球,绿球,白球的概率都是,从而可得回答各个问题以及不回答问题的人数,进而可得回答第一个问题是“是”的人数,根据石子数得出100人中抽烟的人数,从而估计出该学校吸烟的人数.【详解】由题意可知,每个学生从口袋中摸出1个红球,绿球,白球的概率都是.即我们期望大约有人回答了第一个问题,人不回答任何问题,人回答了第二个问题.在回答阳历生日月份是奇数的概率是.因而回答第一个问题的100人中,大约有50人回答了“是”.所以我们能推出,在回答第二个问题的100人中,大约有3人回答了“是”.即估计该学校大约有3%的学生抽烟,也就是全校大约有36人抽烟.【点睛】本题考查了概率的应用,解题的关键是理解题干各个量之间的关系,属于基础题.21、(1)见解析;(2)①,②.【解析】(1)求得,根据函数的定义,即可得到函数的图象关于点对称.(2)①根据函数函数的定义,利用,即可求得.②由在上的值域,得到方程组,转化为为方程的两个根,结合二次函数的性质,即可求解.【详解】(1)由题意,函数,可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论