北京市顺义第九中学2026届高二上数学期末检测试题含解析_第1页
北京市顺义第九中学2026届高二上数学期末检测试题含解析_第2页
北京市顺义第九中学2026届高二上数学期末检测试题含解析_第3页
北京市顺义第九中学2026届高二上数学期末检测试题含解析_第4页
北京市顺义第九中学2026届高二上数学期末检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市顺义第九中学2026届高二上数学期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则()A. B.C. D.2.执行如图所示的程序框图,若输入的的值为3,则输出的的值为()A.3 B.6C.9 D.123.甲、乙两名射击运动员进行比赛,甲的中靶概率为0.8,乙的中靶概率为0.9,则两人各射击一次恰有一人中靶的概率为()A.0.26 B.0.28C.0.72 D.0.984.在一次抛硬币的试验中,某同学用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了48次,那么出现正面朝上的频率和概率分别为()A.0.48,0.48 B.0.5,0.5C.0.48,0.5 D.0.5,0.485.已知椭圆C:的两个焦点分别为,,椭圆C上有一点P,则的周长为()A.8 B.10C. D.126.在空间直角坐标系中,点关于轴对称的点的坐标为()A. B.C. D.7.已知双曲线C:(a>0,b>0),斜率为的直线与双曲线交于不同的两点,且线段的中点为P(2,4),则双曲线的渐近线方程为()A. B.C. D.8.如图,在平行六面体中,底面是边长为的正方形,若,且,则的长为()A. B.C. D.9.和的等差中项与等比中项分别为()A., B.2,C., D.1,10.命题“,”的否定形式是()A.“,” B.“,”C.“,” D.“,”11.已知函数,若函数有3个零点,则实数的取值范围是()A. B.C. D.12.已知椭圆C:()的长轴的长为4,焦距为2,则C的方程为()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点,是椭圆内的两个点,M是椭圆上的动点,则的最大值为______14.直线过点,且原点到直线l的距离为,则直线方程是______15.如图将自然数,…按到箭头所指方向排列,并依次在,…等处的位置拐弯.如图作为第一次拐弯,则第33次拐弯的数是___________,超过2021的第一个拐弯数是____________16.已知双曲线中心在坐标原点,左右焦点分别为,渐近线分别为,过点且与垂直的直线分别交于两点,且,则双曲线的离心率为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在数列中,,且.(1)求,,并证明数列是等比数列;(2)求的通项公式及前n项和.18.(12分)已知分别是椭圆的左、右焦点,点是椭圆上的一点,且的面积为1.(1)求椭圆的短轴长;(2)过原点的直线与椭圆交于两点,点是椭圆上的一点,若为等边三角形,求的取值范围.19.(12分)已知圆C的圆心在x轴上,且经过点,.(1)求圆C的标准方程;(2)过斜率为的直线与圆C相交于M,N,两点,求弦MN的长.20.(12分)函数.(1)当时,解不等式;(2)若不等式对任意恒成立,求实数a的取值范围.21.(12分)已知空间中三点,,,设,(1)求向量与向量的夹角的余弦值;(2)若与互相垂直,求实数的值22.(10分)求适合下列条件的双曲线的标准方程:(1)焦点坐标为,且经过点;(2)焦点在坐标轴上,经过点.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出,代值计算可得的值.【详解】因为,则,故.故选:B.2、A【解析】模拟执行程序框图,根据输入数据,即可求得输出数据.【详解】当时,不满足,故,即输出的的值为.故选:.3、A【解析】依据独立事件同时发生的概率即可求得甲乙两人各射击一次恰有一人中靶的概率.【详解】记甲中靶为事件A,乙中靶为事件B,则甲乙两人各射击一次恰有一人中靶,包含甲中乙不中和甲不中乙中两种情况,则甲乙两人各射击一次恰有一人中靶的概率为故选:A4、C【解析】频率跟实验次数有关,概率是一种现象的固有属性,与实验次数无关,即可得到答案.【详解】频率跟实验次数有关,出现正面朝上的频率为实验中出现正面朝上的次数除以总试验次数,故为.概率是抛硬币试验的固有属性,与实验次数无关,抛硬币正面朝上的概率为.故选:C5、B【解析】根据椭圆的定义可得:,所以的周长等于【详解】因为,,所以,故的周长为故选:B6、B【解析】结合已知条件,利用对称的概念即可求解.【详解】不妨设点关于轴对称的点的坐标为,则线段垂直于轴且的中点在轴,从而点关于轴对称的点的坐标为.故选:B.7、C【解析】设,代入双曲线方程相减后可求得,从而得渐近线方程【详解】设,则,相减得,∴,又线段的中点为P(2,4),的斜率为1,∴,,∴渐近线方程为故选:C【点睛】方法点睛:本题考查求双曲线的渐近线方程,已知弦的中点(或涉及到中点),可设弦两端点的坐标,代入双曲线方程后作差,作差后式子中有直线的斜率,弦中点坐标,有.这种方法叫点差法8、D【解析】由向量线性运算得,利用数量积的定义和运算律可求得,由此可求得.【详解】由题意得:,,且,又,,,,.故选:D.9、C【解析】根据等差中项和等比中项的概念分别求值即可.【详解】和的等差中项为,和的等比中项为.故选:C.10、C【解析】由全称命题的否定是特称命题即得.【详解】“任意”改为“存在”,否定结论即可.命题“,”的否定形式是“,”.故选:C.11、B【解析】构造,通过求导,研究函数的单调性及极值,最值,画出函数图象,数形结合求出实数的取值范围.【详解】令,即,令,当时,,,令得:或,结合,所以,令得:,结合得:,所以在处取得极大值,也是最大值,,当时,,且,当时,,则恒成立,单调递增,且当时,,当时,,画出的图象,如下图:要想有3个零点,则故选:B12、D【解析】由题设可得求出椭圆参数,即可得方程.【详解】由题设,知:,可得,则,∴C的方程为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】结合椭圆的定义求得正确答案.【详解】依题意,椭圆方程为,所以,所以是椭圆的右焦点,设左焦点为,根据椭圆的定义可知,,所以的最大值为.故答案为:14、【解析】直线斜率不存在不满足题意,即设直线的点斜式方程,再利用点到直线的距离公式,求出的值,即可求出直线方程.【详解】①当直线斜率不存在时,显然不满足题意.②当直线斜率存在时,设直线为.原点到直线l的距离为,即直线方程为.故答案为:.15、①.②.【解析】根据题意得到拐弯处的数字与其序数的关系,归纳得到当为奇数为;当为为偶数为,分别代入,即可求解.【详解】解:由题意,拐弯处的数字与其序数的关系,如下表:拐弯的序数012345678拐弯处的数1235710131721观察拐弯处的数字的规律:第1个数;第3个数;第5个数;第7个数;,所以当为奇数为;同理可得:当为为偶数为;第33次拐弯的数是,当时,可得,当时,可得,所以超过2021第一个拐弯数是.故答案为:;.16、【解析】判断出三角形的形状,求得点坐标,由此列方程求得,进而求得双曲线的离心率.【详解】依题意设双曲线方程为,双曲线的渐近线方程为,右焦点,不妨设.由于,所以是线段的中点,由于,所以是线段的垂直平均分,所以三角形是等腰三角形,则.直线的斜率为,则直线的斜率为,所以直线的方程为,由解得,则,即,化简得,所以双曲线的离心率为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,证明见解析(2),【解析】(1)根据递推关系求出,,对递推公式变形,即可得证;(2)结合(1)求得通项公式,分组求和.【小问1详解】因为,且所以,,∵,∴,∵,∴,且,∴数列是等比数列.【小问2详解】由(1)可知是以为首项,以3为公比的等比数列,即,即;.18、(1)2(2)【解析】(1)根据题意表示出的面积,即可求得结果;(2)分类讨论直线斜率情况,然后根据是等边三角形,得到,联立直线和椭圆方程,用点的坐标表示上述关系式,化简即可得答案.【小问1详解】因为,所以,又因为,所以,,所以,则椭圆的短轴长为2.【小问2详解】若为等边三角形,应有,即.当直线的斜率不存在时,直线的方程为,且,此时若为等边三角形,则点应为长轴顶点,且,即.当直线的斜率为0时,直线的方程为,且,此时若为等边二角形,则点应为短轴顶点,此时,不为等边三角形.当直线的斜率存在且不为0时,设其方程为,则直线的方程为.由得,同理.因为,所以,解得.因为,所以,则,即.综上,的取值范围是.19、(1)(2)【解析】(1)由圆的性质可得圆心在线段的垂直平分线上,由题意求出的垂直平分线方程,从而得出圆心坐标,再求出半径,得到答案.(2)由题意先求出满足条件的直线方程,求出圆心到直线的距离,由垂经定理可得圆的弦长.【小问1详解】由题意设圆C的标准方程为设的中点为,则,由圆的性质可得则,又,所以则直线的方程为,即则圆C的圆心在直线上,即,故所以圆心,半径所以圆C的标准方程为【小问2详解】过斜率为的直线方程为:圆心到该直线的距离为所以20、(1);(2).【解析】(1)由题设,原不等式等价于,分类讨论即可得出结论;(2)不等式对任意恒成立,即,即可求实数a的取值范围.【详解】(1)当时,原不等式等价于,当时,,解得,即;当时,恒成立,即;当时,,解得,即;综上,不等式的解集为;(2),,即或,解得,∴a取值范围是.21、(1);(2)或.【解析】(1)坐标表示出、,利用向量夹角的坐标表示求夹角余弦值;(2)坐标表示出k+、k-2,利用向量垂直的坐标表示列方程求的值.【详解】由题设,=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夹角余弦值为.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),则(k-1,k,2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论