版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省承德实验中学2026届数学高二上期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件2.椭圆的焦点为、,上顶点为,若,则()A B.C. D.3.给出下列判断,其中正确的是()A.三点唯一确定一个平面B.一条直线和一个点唯一确定一个平面C.两条平行直线与同一条直线相交,三条直线在同一平面内D.空间两两相交的三条直线在同一平面内4.直线的斜率是方程的两根,则与的位置关系是()A.平行 B.重合C.相交但不垂直 D.垂直5.已知数列通项公式,则()A.6 B.13C.21 D.316.已知双曲线的离心率为5,则其标准方程为()A. B.C. D.7.设椭圆C:的右焦点为F,过原点O的动直线l与椭圆C交于A,B两点,那么的周长的取值范围为()A. B.C. D.8.在平面上有及内一点O满足关系式:即称为经典的“奔驰定理”,若的三边为a,b,c,现有则O为的()A.外心 B.内心C.重心 D.垂心9.下列求导错误的是()A. B.C. D.10.过双曲线右焦点F作双曲线一条渐近线的垂线,垂足为A,与另一条渐近线交于点B,若,则双曲线C的离心率为()A.或 B.2或C.或 D.2或11.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A,B的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系中,,点P满足,设点P的轨迹为C,下列结论正确的是()A.C的方程为B.当A,B,P三点不共线时,面积的最大值为24C.当A,B,P三点不共线时,射线是的角平分线D.在C上存在点M,使得12.若随机事件满足,,,则事件与的关系是()A.互斥 B.相互独立C.互为对立 D.互斥且独立二、填空题:本题共4小题,每小题5分,共20分。13.设点是双曲线上的一点,、分别是双曲线的左、右焦点,已知,且,则双曲线的离心率为________14.已知数列的前4项依次为,,,,则的一个通项公式为________15.设是定义在上的可导函数,且满足,则不等式解集为_______16.函数定义域为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在△ABC中,角A,B,C的对边分别是,已知(1)求角B的大小;(2)求三角形ABC的面积.18.(12分)已知定点,圆:,点Q为圆上动点,线段MQ的垂直平分线交NQ于点P,记P的轨迹为曲线C(1)求曲线C的方程;(2)过点M与N作平行直线和,分别交曲线C于点A,B和点D,E,求四边形ABDE面积的最大值19.(12分)已知抛物线焦点是,斜率为的直线l经过F且与抛物线相交于A、B两点(1)求该抛物线的标准方程和准线方程;(2)求线段AB的长20.(12分)已知,.(1)若,为假命题,求的取值范围;(2)若是的必要不充分条件,求实数的取值范围.21.(12分)已知函数.(1)讨论的单调性;(2)当时,求函数在内的零点个数.22.(10分)已知椭圆的离心率为,且经过点.(1)求椭圆的方程;(2)经过点的直线与椭圆交于不同的两点,,为坐标原点,若的面积为,求直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由三角函数的单调性直接判断是否能推出,反过来判断时,是否能推出.【详解】当时,利用正弦函数的单调性知;当时,或.综上可知“”是“”的充分不必要条件.故选:A【点睛】本题考查判断充分必要条件,三角函数性质,意在考查基本判断方法,属于基础题型.2、C【解析】分析出为等边三角形,可得出,进而可得出关于的等式,即可解得的值.【详解】在椭圆中,,,,如下图所示:因为椭圆的上顶点为点,焦点为、,所以,,为等边三角形,则,即,因此,.故选:C.3、C【解析】根据确定平面的条件可对每一个选项进行判断.【详解】对A,如果三点在同一条直线上,则不能确定一个平面,故A错误;对B,如果这个点在这条直线上,就不能确定一个平面,故B错误;对C,两条平行直线确定一个平面,一条直线与这两条平行直线都相交,则这条直线就在这两条平行直线确定的一个平面内,故这三条直线在同一平面内,C正确;对D,空间两两相交的三条直线可确定一个平面,也可确定三个平面,故D错误.故选:C4、C【解析】由韦达定理可得方程的两根之积为,从而可知直线、的斜率之积为,进而可判断两直线的位置关系【详解】设方程的两根为、,则直线、的斜率,故与相交但不垂直故选:C5、C【解析】令即得解.【详解】解:令得.故选:C6、D【解析】双曲线离心率公式和a、b、c的关系即可求得m,从而得到双曲线的标准方程.【详解】∵双曲线,∴,又,∴,∵离心率为,∴,解得,∴双曲线方程.故选:D.7、A【解析】根据椭圆的对称性椭圆的定义可得,结合的范围求的周长的取值范围.【详解】的周长,又因为A,B两点为过原点O的动直线l与椭圆C的交点,所以A,B两点关于原点对称,椭圆C的左焦点为,则,所以,又因为三点不共线,所以,所以的周长的取值范围为,故选:A.8、B【解析】利用三角形面积公式,推出点O到三边距离相等。【详解】记点O到AB、BC、CA的距离分别为,,,,因为,则,即,又因为,所以,所以点P是△ABC的内心.故选:B9、B【解析】根据导数运算求得正确答案.【详解】、、运算正确.,B选项错误.故选:B10、D【解析】求得点A,B的坐标,利用转化为坐标比求解.【详解】不妨设直线,由题意得,解得,即;由得,即,因为,所以,所以当时,,;当时,,则,故选:D11、C【解析】根据题意可求出C的方程为,即可根据题意判断各选项的真假【详解】对A,由可得,化简得,即,A错误;对B,当A,B,P三点不共线时,点到直线的最大距离为,所以面积的最大值为,B错误;对C,当A,B,P三点不共线时,因为,所以射线是的角平分线,C正确;对D,设,由可得点的轨迹方程为,而圆与圆的圆心距为,两圆内含,所以这样的点不存在,D错误故选:C12、B【解析】利用独立事件,互斥事件和对立事件的定义判断即可【详解】解:因为,,又因为,所以有,所以事件与相互独立,不互斥也不对立故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由双曲线的定义可求得、,利用勾股定理可得出关于、的齐次等式,进而可求得该双曲线的离心率.【详解】由双曲线定义可得,故,由勾股定理可得,即,可得,因此,该双曲线的离心率为.故答案为:.14、(答案不唯一)【解析】观察数列前几项,找出规律即可写出通项公式.【详解】根据数列前几项,先不考虑正负,可知,再由奇数项为负,偶数项为正,可得到一个通项公式,故答案为:(不唯一)15、【解析】构造函数,结合题意求得,由此判断出在上递增,由此求解出不等式的解集.【详解】令,,故函数在上单调递增,不等式可化为,则,解得:【点睛】本小题主要考查构造函数法解不等式,考查化归与转化的数学思想方法,属于基础题.16、【解析】根据函数定义域的求法,即可求解.【详解】解:,解得,故函数的定义域为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)B=300(2)【解析】分析:(1)由同角三角函数关系先求,由正弦定理可求值,从而可求的值;(2)先求得的值,代入三角函数面积公式即可得结果.详解:(1)由正弦定理又∴B为锐角sinA=,由正弦定理B=300(2),∴.点睛:以三角形和为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.18、(1)(2)6【解析】(1)由椭圆的定义求解(2)设直线方程后与椭圆方程联立,由韦达定理表示弦长,将面积转化为函数后求求解【小问1详解】由题意可得,所以动点P的轨迹是以M,N为焦点,长轴长为4的椭圆,即曲线C的方程为:;【小问2详解】由题意可设的方程为,联立方程得,设,,则由根与系数关系有,所以,根据椭圆的对称性可得,与的距离即为点M到直线的距离,为,所以四边形ABDE面积为,令得,由对勾函数性质可知:当且仅当,即时,四边形ABDE面积取得最大值为6.19、(1)抛物线的方程为,其准线方程为,(2)【解析】(1)根据焦点可求出的值,从而求出抛物线的方程,即可得到准线方程;(2)设,,,,将直线的方程与抛物线方程联立消去,整理得,得到根与系数的关系,由抛物线的定义可知,代入即可求出所求【小问1详解】解:由焦点,得,解得所以抛物线的方程为,其准线方程为,【小问2详解】解:设,,,直线的方程为.与抛物线方程联立,得,消去,整理得,由抛物线定义可知,所以线段的长为20、(1)(2)【解析】(1)分别求出命题、为真时参数的取值范围,依题意、都为假命题,求出的取值范围,即可得解;(2)依题意可得是的必要不充分条件,则真包含于,即可得到不等式组,解得即可;【小问1详解】由,解得,即,由,可得,所以,当时,解得,即,因为为假命题,则、都为假命题,当为假命题时:或当为假命题时:或故当、都为假命题,或综上可得;【小问2详解】因为是的必要不充分条件,由(1)可知,,所以真包含于,所以,解得,即21、(1)当,在单调递增;当,在单调递增,在单调递减.(2)0.【解析】(1)求得,对参数分类讨论,即可由每种情况下的正负确定函数的单调性;(2)根据题意求得,利用进行放缩,只需证即,再利用导数通过证明从而得到恒成立,则问题得解.【小问1详解】以为,其定义域为,又,故当时,,在单调递增;当时,令,可得,且令,解得,令,解得,故在单调递增,在单调递减.综上所述:当,在单调递增;当,在单调递增,在单调递减.【小问2详解】因为,故可得,则,;下证恒成立,令,则,故在单调递减,又当时,,故在恒成立,即;因为,故,令,下证在恒成立,要证恒成立,即证,又,故即证,令,则,令,解得,此时该函数单调递增,令,解得,此时该函数单调递减,又当时,,也即;令,则,令,解得,此时该函数单调递减,令,解得,此时该函数单调递增,又当时,,也即;又,故恒成立,则在恒成立,又,故当时,恒成立,则在上的零点个数是.【点睛】本题考察利用导数研究含参函数的单调性,以及函数零点问题的处理;本题第二问处理的关键是通过分离参数和构造函数,证明恒成立,属综合困难题.22、(1);(2)或.【解析】(1)由离心率公式、将点代入椭圆方程得出椭圆的方程;(2)联立椭圆和直线的方程,由判别式得出的范围,再
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025四季度重庆五一职业技术学院合同工招聘24人参考考试试题及答案解析
- 2026中国农业科学院第一批统一招聘14人(蔬菜花卉研究所)笔试重点试题及答案解析
- 2025年无人机空中交通管理报告
- 2025-2026 学年四年级 道德与法治 期末冲刺卷 试卷及答案
- 2025年齐齐哈尔市总工会工会社会工作者招聘39人考试核心题库及答案解析
- 2025年眉山市青神县人民法院公开招聘劳务派遣司法警察的备考题库及答案详解1套
- 2025四川自贡市第一人民医院招聘食堂工人8人备考核心试题附答案解析
- 2025年儿童安全教育游戏化五年开发报告
- 2026年长沙市中小学素质教育实践基地岳麓营地编外合同制教师、教官招聘备考题库及参考答案详解
- 2025广西南宁市武鸣区陆斡中心卫生院招聘编外工作人员1人考试核心题库及答案解析
- 2023-2024学年广东省广州市白云区七年级(上)期末数学试卷(含答案)
- 【MOOC】计算机网络-中国科学技术大学 中国大学慕课MOOC答案
- 购物中心营运管理规范
- 2024-2025学年人教版七年级数学上册期末达标测试卷(含答案)
- 正常顺产护理个案
- DL∕T 1396-2014 水电建设项目文件收集与档案整 理规范
- 科技奥运成果推广
- DL-T5181-2017水电水利工程锚喷支护施工规范
- 走近核科学技术智慧树知到期末考试答案2024年
- 牛肉丸项目市场营销方案
- 三通、大小头面积计算公式
评论
0/150
提交评论