2026届甘肃省兰州五十一中数学高二上期末质量跟踪监视模拟试题含解析_第1页
2026届甘肃省兰州五十一中数学高二上期末质量跟踪监视模拟试题含解析_第2页
2026届甘肃省兰州五十一中数学高二上期末质量跟踪监视模拟试题含解析_第3页
2026届甘肃省兰州五十一中数学高二上期末质量跟踪监视模拟试题含解析_第4页
2026届甘肃省兰州五十一中数学高二上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届甘肃省兰州五十一中数学高二上期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线内一点,过点的直线交抛物线于,两点,且点为弦的中点,则直线的方程为()A. B.C D.2.已知椭圆C:的左、右焦点分别为F1,F2,过点F1作直线l交椭圆C于M,N两点,则的周长为()A.3 B.4C.6 D.83.椭圆的长轴长是()A.3 B.4C.6 D.84.等差数列中,,,则当取最大值时,的值为A.6 B.7C.6或7 D.不存在5.已知过点的直线与圆相切,且与直线平行,则()A.2 B.1C. D.6.已知等差数列满足,则等于()A. B.C. D.7.直线分别交坐标轴于A,B两点,O为坐标原点,三角形OAB的内切圆上有动点P,则的最小值为()A.16 B.18C.20 D.228.已知关于的不等式的解集是,则的值是()A B.5C. D.79.某产品的广告费用x与销售额y的统计数据如下表:广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元 B.65.5万元C.67.7万元 D.72.0万元10.如图,在棱长为2的正方体中,点P在截面上(含边界),则线段的最小值等于()A. B.C. D.11.若复数满足,则复数对应的点的轨迹围成图形的面积等于()A. B.C. D.12.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的表面积为()A. B.C.8 D.12二、填空题:本题共4小题,每小题5分,共20分。13.已知平面的一个法向量为,点为内一点,则点到平面的距离为___________.14.已知数列满足,则的前20项和___________.15.已知向量,若,则实数___________.16.正三棱柱的底面边长和高均为2,点为侧棱的中点,连接,,则点到平面的距离为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线E:过点Q(1,2),F为其焦点,过F且不垂直于x轴的直线l交抛物线E于A,B两点,动点P满足△PAB的垂心为原点O.(1)求抛物线E的方程;(2)求证:动点P在定直线m上,并求的最小值.18.(12分)已知抛物线的焦点也是椭圆的一个焦点,如图,过点任作两条互相垂直的直线,,分别交抛物线于,,,四点,,分别为,的中点.(1)求的值;(2)求证:直线过定点,并求出该定点的坐标;(3)设直线交抛物线于,两点,试求的最小值.19.(12分)已知函数(1)若,求函数的单调区间;(2)若函数有两个不相等的零点,证明:20.(12分)已知椭圆F:经过点且离心率为,直线和是分别过椭圆F的左、右焦点的两条动直线,它们与椭圆分别相交于点A、B和C、D,O为坐标原点,直线AB和直线CD相交于M.记直线的斜率分别为,且(1)求椭圆F标准方程(2)是否存在定点P,Q,使得为定值.若存在,请求出P、Q的坐标,若不存在,请说明理由21.(12分)2021年10月16日,搭载“神舟十三号”的火箭发射升空,有很多民众通过手机、电视等方式观看有关新闻.某机构将关注这件事的时间在2小时以上的人称为“天文爱好者”,否则称为“非天文爱好者”,该机构通过调查,从参与调查的人群中随机抽取100人进行分析,得到下表(单位:人):天文爱好者非天文爱好者合计女203050男351550合计5545100(1)能否有99%的把握认为“天文爱好者”或“非天文爱好者”与性别有关?(2)现从抽取的女性人群中,按“天文爱好者”和“非天文爱好者”这两种类型进行分层抽样抽取5人,然后再从这5人中随机选出3人,记其中“天文爱好者”的人数为X,求X的分布列和数学期望附:,其中n=a+b+c+d0.100.050.0100.0050.0012.7063.8416.6357.87910.82822.(10分)已知数列的前n项和为,且(1)求数列的通项公式;(2)若,数列的前n项和为,求的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用点差法求出直线斜率,即可得出直线方程.【详解】设,则,两式相减得,即,则直线方程为,即.故选:B.2、D【解析】由的周长为,结合椭圆的定义,即可求解.【详解】由题意,椭圆,可得,即,如图所示,根据椭圆的定义,可得的周长为故选:D.3、D【解析】根据椭圆方程可得到a,从而求得长轴长.【详解】椭圆方程为,故,所以椭圆长轴长为,故选:D.4、C【解析】设等差数列的公差为∵∴∴∴∵∴当取最大值时,的值为或故选C5、C【解析】先根据垂直关系设切线方程,再根据圆心到切线距离等于半径列式解得结果.【详解】因为切线与直线平行,所以切线方程可设为因为切线过点P(2,2),所以因为与圆相切,所以故选:C6、A【解析】利用等差中项求出的值,进而可求得的值.【详解】因为得,因此,.故选:A.7、B【解析】由题意,求出内切圆的半径和圆心坐标,设,则,由表示内切圆上的动点P到定点的距离的平方,从而即可求解最小值.【详解】解:因为直线分别交坐标轴于A,B两点,所以设,则,因为,所以三角形OAB的内切圆半径,内切圆圆心为,所以内切圆的方程为,设,则,因为表示内切圆上的动点P到定点的距离的平方,且在内切圆内,所以,所以,,即的最小值为18,故选:B.8、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D9、B【解析】,∵数据的样本中心点在线性回归直线上,回归方程中的为9.4,∴42=9.4×3.5+a,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5考点:线性回归方程10、B【解析】根据体积法求得到平面的距离即可得【详解】由题意的最小值就是到平面的距离正方体棱长为2,则,,设到平面的距离为,由得,解得故选:B11、D【解析】利用复数的几何意义,即可判断轨迹图形,再求面积.【详解】复数满足,表示复数对应的点的轨迹是以点为圆心,半径为3的圆,所以围成图形的面积等于.故选:D12、B【解析】首先确定几何体的空间结构特征,然后求解其表面积即可.【详解】由题意知,该几何体是一个由8个全等的正三角形围成的多面体,正三角形的边长为:,正三角形边上的一条高为:,所以一个正三角形的面积为:,所以多面体的表面积为:.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】利用空间向量求点到平面的距离即可.【详解】,,∴则点P到平面的距离为.故答案为:1.14、135【解析】直接利用数列的递推关系式写出相邻四项之和,进而求出数列的和.【详解】数列满足,所以,故,当时,,当时,,,当时,,所以.故答案为:135.15、2【解析】利用向量平行的条件直接解出.【详解】因为向量,且,所以,解得:2故答案为:216、【解析】建立空间直角坐标系,利用空间向量求点面距离的公式可以直接求出.【详解】如图,建立空间直角坐标系,为的中点,由已知,,,,,所以,,设平面的法向量为,,即:,取,得,,则点到平面的距离为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析,的最小值为.【解析】(1)将点的坐标代入抛物线方程,由此求得的值,进而求得抛物线的方程.(2)设出直线的方程,联立直线的方程与抛物线的方程,写出韦达定理,设出直线的方程,联立直线的方程求得的坐标,由此判断出动点在定直线上.求得的表达式,利用基本不等式求得其最小值.【详解】(1)将点坐标代入抛物线方程得,所以.(2)由(1)知抛物线的方程为,所以,设直线的方程为,设,由消去得,所以.由于为三角形的垂心,所以,所以直线的方程为,即.同理可求得直线的方程为.由,结合,解得,所以在定直线上.直线的方程为,到直线的距离为,到直线的距离为.所以,当且仅当时取等号.所以的最小值为.【点睛】本小题主要考查抛物线方程的求法,考查直线和抛物线的位置关系,考查抛物线中三角形面积的有关计算,属于中档题.18、(1)(2)证明见解析,(3,0)(3)【解析】(1)求出椭圆的焦点坐标,从而可知抛物线的焦点坐标,进而可得的值;(2)首先设出直线的方程,联立直线与抛物线的方程,得到,坐标,令,可得直线过点,再证明当,,,三点共线即可;(3)设出的直线方程,联立直线与抛物线的方程,利用韦达定理找出根的关系,再利用两点间的距离公式求出最小值即可.【小问1详解】椭圆的焦点坐标为,由于抛物线的焦点也是椭圆的一个焦点,故,即,;小问2详解】由(1)知,抛物线的方程为,设,,,,由题意,直线的斜率存在且设直线的方程为,代入可得,则,故,故的中点坐标为,由,设直线的方程为,代入可得,则,故,可得的中点坐标为,令得,此时,故直线过点,当时,,所以,,,三点共线,所以直线过定点.【小问3详解】设,由题意直线的斜率存在,设直线的方程为,代入可得,则,,,故,当即直线垂直轴时,取得最小值.19、(1)单调递增区间是(4,+∞),单调递减区间是(0,4);(2)证明见解析.【解析】(1)求的导函数,结合定义域及导数的符号确定单调区间;(2)法一:讨论、时的零点情况,即可得,构造,利用导数研究在(0,2a)恒成立,结合单调性证明不等式;法二:设,由零点可得,进而应用分析法将结论转化为证明,综合换元法、导数证明结论即可.【小问1详解】函数的定义域为(0,+∞),当a=2时,,则令得,x>4;令得,0<x<4;所以,单调递增区间是(4,+∞);单调递减区间是(0,4).【小问2详解】法一:当a≤0时,>0在(0,+∞)上恒成立,故函数不可能有两个不相等的零点,当a>0时,函数在(2a,+∞)上单调递增,在(0,2a)上单调递减,因为函数有两个不相等的零点,则,不妨设,设,(0<x<2a),则,所以,由a>0知:在(0,2a)恒成立,所以在(0,2a)上单调递减,即>=0,所以,即,又,故,因为,所以,因为函数在(2a,+∞)上单调递增,所以,即法二:不妨设,由题意得,,得,即,要证,只需证,即证:,即,令,,则,所以在区间(1,+∞)单调递减,故<=0,即恒成立因此,所以.【点睛】关键点点睛:第二问,法一:应用极值点偏移方法构造,将问题转化为在(0,2a)恒成立,法二:根据零点可得,再由分析法将问题化为证明,构造函数,综合运用换元法、导数证明结论.20、(1);(2)存在点,使得为定值.【解析】(1)设,,,结合条件即求;(2)由题可设直线方程,利用韦达定理法可得,再结合条件可得点的轨迹方程为,然后利用椭圆的定义即得结论.【小问1详解】设,,,椭圆方程为:,椭圆过点,,解得t=1,所以椭圆F的方程是【小问2详解】由题可得焦点的坐标分别为,当直线AB或CD的斜率不存在时,点M的坐标为或,当直线AB和CD的斜率都存在时,设斜率分别为,点,直线AB为,联立,得则,,同理可得,,因为,所以,化简得由题意,知,所以设点,则,所以,化简得,当直线或的斜率不存在时,点M的坐标为或,也满足此方程所以点在椭圆上,根据椭圆定义可知,存在定点,使得为定值【点睛】关键点点睛:本题的关键是利用韦达定理法及题设条件求出点M的轨迹方程,再结合椭圆的定义,从而问题得到解决.21、(1)有(2)分布列见解析,【解析】(1)依题意由列联表计算出卡方,与参考数值比较,即可判断;(2)按照分层抽样得到有2人为“天文爱好者”,有3人为“非天文爱好者”,记“天文爱好者”的人数为X,则X的可能值为0,1,2,即可求出所对应的概率,从而得到分布列与数学期望;【小问1详解】解:由题意,所以有99%的把握认为“天文爱好者”或“非天文爱好者”与性别有关.【小问2详解】解:抽取的100人中女性人群有50人,其中“天文爱好者”有20人,“非天文爱好者”有30人,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论