那曲地区比如县2025年高考数学考前最后一卷预测卷含解析_第1页
那曲地区比如县2025年高考数学考前最后一卷预测卷含解析_第2页
那曲地区比如县2025年高考数学考前最后一卷预测卷含解析_第3页
那曲地区比如县2025年高考数学考前最后一卷预测卷含解析_第4页
那曲地区比如县2025年高考数学考前最后一卷预测卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

那曲地区比如县2025年高考数学考前最后一卷预测卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,集合,若,则()A. B. C. D.2.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为()A. B. C. D.3.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,若点的横坐标为,则的取值范围是()A. B. C. D.4.世纪产生了著名的“”猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,则将它乘加,不断重复这样的运算,经过有限步后,一定可以得到.如图是验证“”猜想的一个程序框图,若输入正整数的值为,则输出的的值是()A. B. C. D.5.已知,是两条不重合的直线,,是两个不重合的平面,则下列命题中错误的是()A.若,,则或B.若,,,则C.若,,,则D.若,,则6.的展开式中各项系数的和为2,则该展开式中常数项为A.-40 B.-20 C.20 D.407.已知a,b∈R,,则()A.b=3a B.b=6a C.b=9a D.b=12a8.的展开式中的系数是-10,则实数()A.2 B.1 C.-1 D.-29.函数的部分图像大致为()A. B.C. D.10.已知函数,若则()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)11.已知抛物线,过抛物线上两点分别作抛物线的两条切线为两切线的交点为坐标原点若,则直线与的斜率之积为()A. B. C. D.12.复数的实部与虚部相等,其中为虚部单位,则实数()A.3 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的值域为_____.14.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.己知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是,则小球落入袋中的概率为__________.15.函数的定义域为______.16.在的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求f(x)的单调递增区间;(2)△ABC内角A、B、C的对边分别为a、b、c,若且A为锐角,a=3,sinC=2sinB,求△ABC的面积.18.(12分)选修4-5:不等式选讲已知函数的最大值为3,其中.(1)求的值;(2)若,,,求证:19.(12分)已知函数(1)当时,若恒成立,求的最大值;(2)记的解集为集合A,若,求实数的取值范围.20.(12分)已知函数,.(1)求函数在处的切线方程;(2)当时,证明:对任意恒成立.21.(12分)设为实数,在极坐标系中,已知圆()与直线相切,求的值.22.(10分)已知的图象在处的切线方程为.(1)求常数的值;(2)若方程在区间上有两个不同的实根,求实数的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

根据或,验证交集后求得的值.【详解】因为,所以或.当时,,不符合题意,当时,.故选A.本小题主要考查集合的交集概念及运算,属于基础题.2.B【解析】

根据程序框图列举出程序的每一步,即可得出输出结果.【详解】输入,不成立,是偶数成立,则,;不成立,是偶数不成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;成立,跳出循环,输出i的值为.故选:B.本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.3.A【解析】

由题意得,即可得点M的轨迹为以A,B为左、右焦点,的双曲线,根据双曲线的性质即可得解.【详解】如图,连接OP,AM,由题意得,点M的轨迹为以A,B为左、右焦点,的双曲线,.故选:A.本题考查了双曲线定义的应用,考查了转化化归思想,属于中档题.4.C【解析】

列出循环的每一步,可得出输出的的值.【详解】,输入,,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数不成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,成立,跳出循环,输出的值为.故选:C.本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.5.D【解析】

根据线面平行和面面平行的性质,可判定A;由线面平行的判定定理,可判断B;C中可判断,所成的二面角为;D中有可能,即得解.【详解】选项A:若,,根据线面平行和面面平行的性质,有或,故A正确;选项B:若,,,由线面平行的判定定理,有,故B正确;选项C:若,,,故,所成的二面角为,则,故C正确;选项D,若,,有可能,故D不正确.故选:D本题考查了空间中的平行垂直关系判断,考查了学生逻辑推理,空间想象能力,属于中档题.6.D【解析】令x=1得a=1.故原式=.的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.故常数项==-40+80=407.C【解析】

两复数相等,实部与虚部对应相等.【详解】由,得,即a,b=1.∴b=9a.故选:C.本题考查复数的概念,属于基础题.8.C【解析】

利用通项公式找到的系数,令其等于-10即可.【详解】二项式展开式的通项为,令,得,则,所以,解得.故选:C本题考查求二项展开式中特定项的系数,考查学生的运算求解能力,是一道容易题.9.A【解析】

根据函数解析式,可知的定义域为,通过定义法判断函数的奇偶性,得出,则为偶函数,可排除选项,观察选项的图象,可知代入,解得,排除选项,即可得出答案.【详解】解:因为,所以的定义域为,则,∴为偶函数,图象关于轴对称,排除选项,且当时,,排除选项,所以正确.故选:A.本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除.10.C【解析】

利用导数求得在上递增,结合与图象,判断出的大小关系,由此比较出的大小关系.【详解】因为,所以在上单调递增;在同一坐标系中作与图象,,可得,故.故选:C本小题主要考查利用导数研究函数的单调性,考查利用函数的单调性比较大小,考查数形结合的数学思想方法,属于中档题.11.A【解析】

设出A,B的坐标,利用导数求出过A,B的切线的斜率,结合,可得x1x2=﹣1.再写出OA,OB所在直线的斜率,作积得答案.【详解】解:设A(),B(),由抛物线C:x2=1y,得,则y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故选:A.点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是解题的思路,由于与切线有关,所以一般先设切点,先设A,B,,再求切线PA,PB方程,求点P坐标,再根据得到最后求直线与的斜率之积.如果先设点P的坐标,计算量就大一些.12.B【解析】

利用乘法运算化简复数即可得到答案.【详解】由已知,,所以,解得.故选:B本题考查复数的概念及复数的乘法运算,考查学生的基本计算能力,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

利用配方法化简式子,可得,然后根据观察法,可得结果.【详解】函数的定义域为所以函数的值域为故答案为:本题考查的是用配方法求函数的值域问题,属基础题。14.【解析】记小球落入袋中的概率,则,又小球每次遇到黑色障碍物时一直向左或者一直向右下落,小球将落入袋,所以有,则.故本题应填.15.【解析】

对数函数的定义域需满足真数大于0,再由指数型不等式求解出解集即可.【详解】对函数有意义,即.故答案为:本题考查求对数函数的定义域,还考查了指数型不等式求解,属于基础题.16.1【解析】

由题意可得,再利用二项展开式的通项公式,求得二项展开式常数项的值.【详解】的二项展开式的中,只有第5项的二项式系数最大,,通项公式为,令,求得,可得二项展开式常数项等于,故答案为1.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】

(1)利用降次公式、辅助角公式化简解析式,根据三角函数单调区间的求法,求得的单调递增区间.(2)先由求得,利用正弦定理得到,结合余弦定理列方程,求得,由此求得三角形的面积.【详解】(1)函数,,由,得.所以的单调递增区间为.(2)因为且为锐角,所以.由及正弦定理可得,又,由余弦定理可得,解得,.本小题主要考查三角恒等变换,考查三角函数单调区间的求法,考查正弦定理、余弦定理解三角形,考查三角形的面积公式,属于中档题.18.(1)(2)见解析【解析】

(1)分三种情况去绝对值,求出最大值与已知最大值相等列式可解得;(2)将所证不等式转化为2ab≥1,再构造函数利用导数判断单调性求出最小值可证.【详解】(1)∵,∴.∴当时,取得最大值.∴.(2)由(Ⅰ),得,.∵,当且仅当时等号成立,∴.令,.则在上单调递减.∴.∴当时,.∴.本题考查了绝对值不等式的解法,属中档题.本题主要考查了绝对值不等式的求解,以及不等式的恒成立问题,其中解答中根据绝对值的定义,合理去掉绝对值号,及合理转化恒成立问题是解答本题的关键,着重考查分析问题和解答问题的能力,以及转化思想的应用.19.(1);(2)【解析】

(1)当时,由题意得到,令,分类讨论求得函数的最小值,即可求得的最大值.(2)由时,不等式恒成立,转化为在上恒成立,得到,即可求解.【详解】(1)由题意,当时,由,可得,令,则只需,当时,;当时,;当时,;故当时,取得最小值,即的最大值为.(2)依题意,当时,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,则,所以,所示实数的取值范围是.本题主要考查了含绝对值的不等式的解法,以及不等式的恒成立问题的求解与应用,着重考查了转化思想,以及推理与计算能力.20.(1)(2)见解析【解析】

(1)因为,可得,即可求得答案;(2)要证对任意恒成立,即证对任意恒成立.设,,当时,,即可求得答案.【详解】(1),,,函数在处的切线方程为.(2)要证对任意恒成立.即证对任意恒成立.设,,当时,,,令,解得,当时,,函数在上单调递减;当时,,函数在上单调递增.,,,当时,对任意恒成立,即当时,对任意恒成立.本题主要考查了求曲线的切线方程和求证不等式恒成立问题,解题关键是掌握由导数求切线方程的解法和根据导数求证不等式恒成立的方法,考查了分析能力和计算能力,属于难题.21.【解析】

将圆和直线化成普通方程.再根据相切,圆心到直线的距离等于半径,列等式方程,解方程即可.【详解】解:将圆化成普通方程为,整理得.将直线化成普通方程为.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论