福建省泉州市永春县第一中学2026届高二上数学期末质量跟踪监视试题含解析_第1页
福建省泉州市永春县第一中学2026届高二上数学期末质量跟踪监视试题含解析_第2页
福建省泉州市永春县第一中学2026届高二上数学期末质量跟踪监视试题含解析_第3页
福建省泉州市永春县第一中学2026届高二上数学期末质量跟踪监视试题含解析_第4页
福建省泉州市永春县第一中学2026届高二上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省泉州市永春县第一中学2026届高二上数学期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在空间直角坐标系中,点关于平面的对称点为,则()A.-4 B.-10C.4 D.102.已知两圆相交于两点,,两圆圆心都在直线上,则值为()A. B.C. D.3.若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于A.2 B.3C.6 D.94.已知等比数列各项均为正数,且,,成等差数列,则()A. B.C. D.5.等比数列的各项均为正数,且,则A. B.C. D.6.已知抛物线的焦点为F,准线为l,点P在抛物线上,直线PF交x轴于Q点,且,则点P到准线l的距离为()A.4 B.5C.6 D.77.已知,是空间中的任意两个非零向量,则下列各式中一定成立的是()A. B.C. D.8.已知等比数列的前项和为,首项为,公比为,则()A. B.C. D.9.如图,是函数的部分图象,且关于直线对称,则()A. B.C. D.10.设,,则与的等比中项为()A. B.C. D.11.下列曲线中,与双曲线有相同渐近线是()A. B.C. D.12.已知数列满足,(且),若恒成立,则M的最小值是()A.2 B.C. D.3二、填空题:本题共4小题,每小题5分,共20分。13.已知为等比数列的前n项和,若,,则_____________.14.等差数列的公差,是其前n项和,给出下列命题:若,且,则和都是中的最大项;给定n,对于一些,都有;存在使和同号;.其中正确命题的序号为___________.15.若,满足约束条件,则的最小值为__________16.已知为坐标原点,等轴双曲线的右焦点为,点在双曲线上,由向双曲线的渐近线作垂线,垂足分别为、,则四边形的面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知三角形的三个顶点,求边所在直线的方程,以及该边上中线所在直线的方程18.(12分)已知数列的前项和为,已知,且当,时,(1)证明数列是等比数列;(2)设,求数列的前项和19.(12分)已知函数在处的切线与轴平行(1)求的值;(2)判断在上零点的个数,并说明理由20.(12分)如图,在四棱锥中,底面四边形为角梯形,,,,O为的中点,,.(1)证明:平面;(2)若,求平面与平面所成夹角的余弦值.21.(12分)已知数列与满足(1)若,且,求数列的通项公式;(2)设的第k项是数列的最小项,即恒成立.求证:的第k项是数列的最小项;(3)设.若存在最大值M与最小值m,且,试求实数的取值范围22.(10分)如图,四棱锥中,侧面是边长为4的正三角形,且与底面垂直,底面是菱形,且,为的中点(1)求证:;(2)求点到平面的距离

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据关于平面对称的点的规律:横坐标、纵坐标保持不变,竖坐标变为它的相反数,即可求出点关于平面的对称点的坐标,再利用向量的坐标运算求.【详解】解:由题意,关于平面对称的点横坐标、纵坐标保持不变,竖坐标变为它的相反数,从而有点关于对称的点的坐标为(2,−1,-3).故选:A【点睛】本题以空间直角坐标系为载体,考查点关于面的对称,考查数量积的坐标运算,属于基础题2、A【解析】由相交弦的性质,可得与直线垂直,且的中点在这条直线上;由与直线垂直,可得,解可得的值,即可得的坐标,进而可得中点的坐标,代入直线方程可得;进而将、相加可得答案【详解】根据题意,由相交弦的性质,相交两圆的连心线垂直平分相交弦,可得与直线垂直,且的中点在这条直线上;由与直线垂直,可得,解可得,则,故中点为,且其在直线上,代入直线方程可得,1,可得;故;故选:A【点睛】方法点睛:解答圆和圆的位置关系时,要注意利用平面几何圆的知识来分析解答.3、D【解析】求出导函数,利用函数在极值点处的导数值为0得到a,b满足的条件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等解:∵f′(x)=12x2﹣2ax﹣2b又因为在x=1处有极值∴a+b=6∵a>0,b>0∴当且仅当a=b=3时取等号所以ab的最大值等于9故选D点评:本题考查函数在极值点处的导数值为0、考查利用基本不等式求最值需注意:一正、二定、三相等4、A【解析】结合等差数列的性质求得公比,然后由等比数列的性质得结论【详解】设的公比为,因为,,成等差数列,所以,即,,或(舍去,因为数列各项为正)所以故选:A5、B【解析】根据等比数列的性质,结合已知条件,求得,进而求得的值.【详解】由于数列是等比数列,故,所以,故.故选B.【点睛】本小题主要考查等比数列的性质,考查对数运算,属于基础题.6、C【解析】根据题干条件得到相似,进而得到,求出点P到准线l的距离.【详解】由题意得:,准线方程为,因为,所以,故点P到准线l的距离为.故选:C7、C【解析】利用向量数量积的定义及运算性质逐一分析各选项即可得答案.【详解】解:对A:因为,所以,故选项A错误;对B:因为,故选项B错误;对C:因为,故选项C正确;对D:因为,故选项D错误故选:C.8、D【解析】根据求解即可.【详解】因为等比数列,,所以.故选:D9、C【解析】先根据条件确定为函数的极大值点,得到的值,再根据图像的单调性和导数几何意义得到和的正负即可判断.【详解】根据题意得,为函数部分函数的极大值点,所以,又因为函数在单调递增,由图像可知处切线斜率为锐角,根据导数的几何意义,所以,又因为函数在单调递增,由图像可知处切线斜率为钝角,根据导数的几何意义所以.即.故选:C.10、C【解析】利用等比中项的定义可求得结果.【详解】由题意可知,与的等比中项为.故选:C.11、B【解析】求出已知双曲线的渐近线方程,逐一验证即可.【详解】双曲线的渐近线方程为,而双曲线的渐近线方程为,双曲线的渐近线方程为,双曲线的渐近线方程为,双曲线的渐近线方程为.故选:B12、C【解析】根据,(且),利用累加法求得,再根据恒成立求解.【详解】因为数列满足,,(且)所以,,,,因为恒成立,所以,则M的最小值是,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、30【解析】根据等比数列性质得,,也成等比,即可求得结果.【详解】由等比数列的性质可知,,,构成首项为10,公比为1的等比数列,所以【点睛】本题考查等比数列性质,考查基本求解能力,属基础题.14、【解析】对,根据数列的单调性和可判断;对和,利用等差数列的通项公式可直接推导;对,利用等差数列的前项和可直接推导.【详解】不妨设等差数列的首项为对,,可得:,解得:,即又,则是递减的,则中的前5项均为正数,所以和都是中的最大项,故正确;对,,故有:,故正确;对,,又,则,说明不存在使和同号,故错误;对,有:故并不是恒成立的,故错误故答案为:15、【解析】作出线性约束条件的可行域,再利用截距的几何意义求最小值;【详解】约束条件的可行域,如图所示:目标函数在点取得最小值,即.故答案为:16、##【解析】求出双曲线的方程,可求得双曲线的两条渐近线方程,分析可知四边形为矩形,然后利用点到直线的距离公式以及矩形的面积公式可求得结果.【详解】因为双曲线为等轴双曲线,则,,可得,所以,双曲线的方程为,双曲线的渐近线方程为,则双曲线的两条渐近线互相垂直,则,,,所以,四边形为矩形,设点,则,不妨设点为直线上的点,则,,所以,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、;【解析】根据两点式方程和中点坐标公式求解,并化为一般式方程即可.【详解】解:过的两点式方程为,整理得即边所在直线的方程为,边上的中线是顶点A与边中点M所连线段,由中点坐标公式可得点M的坐标为,即过,的直线的方程为,即整理得所以边上中线所在直线的方程为18、(1)证明见解析;(2).【解析】(1)消去,只保留数列的递推关系,根据题干提示来证明,注意证明首项不是零;(2)利用裂项求和来解决.【小问1详解】证明:由题意,当时,即,,整理,得,,,,数列是以2为首项,2为公比的等比数列【小问2详解】解:由(1)知,,则,,,,,各项相加,可得,当n=1成立,故19、(1)0(2)f(x)在(0,π)上有且只有一个零点,理由见解析【解析】(1)利用导数的几何意义求解;(2)由,可得,令,,,,利用导数法求解.【小问1详解】解:,所以k=f′(0)=-a=0,所以a=0;【小问2详解】由,可得,令,,所以,①当时,sinx+cosx≥1,ex>1,所以g′(x)>0,所以g(x)在上单调递增,又因为g(0)=0,所以g(x)在上无零点;②当时,令,所以h′(x)=2cosxex<0,即h(x)在上单调递减,又因为,h(π)=-eπ-1<0,所以存在,,所以g(x)在上单调递增,在上单调递减,因为,g(π)=-π<0,所以g(x)在上且只有一个零点;综上所述:f(x)在(0,π)上有且只有一个零点20、(1)证明见解析;(2).【解析】(1)连接,可通过证明,得平面;(2)以O为坐标原点建立如图所示的空间直角坐标系,求出平面的法向量和平面的法向量,通过向量的夹角公式可得答案.【小问1详解】如图,连接,在中,由可得.因为,,所以,,因为,,,所以,所以.又因为,平面,,所以平面.【小问2详解】由(1)可知,,,两两垂直,以O为坐标原点建立如图所示的空间直角坐标系,则,,,,.由,有,则,设平面的法向量为,由,,有,取,则,,可得平面的一个法向量为.设平面的法向量为,由,,有,取,则,,可得平面的一个法向量为.由,,,可得平面与平面所成夹角的余弦值为.21、(1)(2)证明见解析.(3)【解析】(1)由已知关系得出是等差数列及公差,然后可得通项公式;(2)由已知关系式,利用累加法证明对任意的,恒成立,即可得(3)由累加法求得通项公式,然后确定的奇数项和偶数项的单调性,得出数列的最大项和最小项,再利用已知范围解得的范围【小问1详解】由已知,是等差数列,公差为6,所以;【小问2详解】对任意的,恒成立,而恒成立,若,则,恒成立,同理若,也有恒成立,所以对任意的,恒成立,即是最小项;【小问3详解】时,,所以,也适合此式所以,若,则,,,即,,若,由于,且是正负相间,因此无最大项也无最小项因此有,所以的奇数项数列是递增数列,且,,的偶数项数列是递减数列,且,,所以的最大值是,最小项是,,由,又,所以22、(1)证明见解析;(2).【解析】(1)取的中点,连接,,,先证明平面,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论