版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届海南省定安中学高二数学第一学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若1,m,9三个数成等比数列,则圆锥曲线的离心率是()A.或 B.或2C.或 D.或22.设函数在上可导,则等于()A. B.C. D.以上都不对3.圆关于直线l:对称的圆的方程为()A. B.C. D.4.已知P是椭圆上的一点,是椭圆的两个焦点且,则的面积是()A. B.2C. D.15.命题“,均有”的否定为()A.,均有 B.,使得C.,使得 D.,均有6.不等式的解集为()A. B.C. D.7.如图是函数的导函数的图象,下列结论中正确的是()A.在上是增函数 B.当时,取得最小值C.当时,取得极大值 D.在上是增函数,在上是减函数8.已知,为正实数,且,则的最小值为()A. B.C. D.19.某高校甲、乙两位同学大学四年选修课程的考试成绩等级(选修课的成绩等级分为1,2,3,4,5,共五个等级)的条形图如图所示,则甲成绩等级的中位数与乙成绩等级的众数分别是()A.3,5 B.3,3C.3.5,5 D.3.5,410.已知过点的直线与圆相切,且与直线垂直,则()A. B.C. D.11.若直线的倾斜角为120°,则直线的斜率为()A. B.C. D.12.执行如图所示的程序框图,输出的s值为()A.8 B.9C.27 D.36二、填空题:本题共4小题,每小题5分,共20分。13.如图,在矩形中,,,将沿BD所在的直线进行翻折,得到空间四边形.给出下面三个结论:①在翻折过程中,存在某个位置,使得;②在翻折过程中,三棱锥的体积不大于;③在翻折过程中,存在某个位置,使得异面直线与所成角45°.其中所有正确结论的序号是___________.14.若数列满足,则称为“追梦数列”.已知数列为“追梦数列”,且,则数列的通项公式__________.15.双曲线的渐近线方程为______16.不大于100的正整数中,被3除余1的所有数的和是___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线过点.(1)求抛物线方程;(2)若直线与抛物线交于两点两点在轴的两侧,且,求证:过定点.18.(12分)如图,在正方体中,分别为,的中点(1)求证:平面平面;(2)求平面与平面所成锐二面角的余弦值19.(12分)在平面直角坐标系中,已知椭圆的焦点为,且过点,椭圆的上、下顶点分别为,右顶点为,直线过点且垂直于轴(1)求椭圆的标准方程;(2)若点在椭圆上(且在第一象限),直线与交于点,直线与轴交于点,试问:是否为定值?若是,请求出定值;若不是,请说明理由20.(12分)已知直线过点(1)若直线与直线垂直,求直线的方程;(2)若直线在两坐标轴的截距相等,求直线的方程21.(12分)已知数列的前项和满足,数列满足(1)求,的通项公式;(2)若数列满足,求的前项和22.(10分)动点M到点的距离比它到直线的距离小,记M的轨迹为曲线C.(1)求C的方程;(2)已知圆,设P,A,B是C上不同的三点,若直线PA,PB均与圆D相切,若P的纵坐标为,求直线AB的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】运用等比数列的性质可得,再讨论,,求出曲线的,,由离心率公式计算即可得到【详解】三个数1,,9成等比数列,则,解得,,当时,曲线为椭圆,则;当时,曲线为为双曲线,则离心率故选:2、C【解析】根据目标式,结合导数的定义即可得结果.【详解】.故选:C3、A【解析】首先求出圆的圆心坐标与半径,再设圆心关于直线对称的点的坐标为,即可得到方程组,求出、,即可得到圆心坐标,从而求出对称圆的方程;【详解】解:圆的圆心为,半径,设圆心关于直线对称的点的坐标为,则,解得,即圆关于直线对称的圆的圆心为,半径,所以对称圆的方程为;故选:A4、A【解析】设,先求出m、n,再利用面积公式即可求解.【详解】在中,设,则,解得:.因为,所以,所以的面积是.故选:A5、C【解析】全称命题的否定是特称命题【详解】根据全称命题的否定是特称命题,所以命题“,均有”的否定为“,使得”故选:C6、A【解析】根据一元二次不等式的解法进行求解即可.【详解】,故选:A.7、D【解析】根据导函数的图象判断出函数的单调区间、极值、最值,由此确定正确选项.【详解】根据图象知:当,时,函数单调递减;当,时,函数单调递增.所以在上单调递减,在上单调递增,在上单调递减,在上单调递增,故选项A不正确,选项D正确;故当时,取得极小值,选项C不正确;当时,不是取得最小值,选项B不正确;故选:D.8、D【解析】利用基本不等式可求的最小值.【详解】可化为,由基本不等式可得,故,当且仅当时等号成立,故的最小值为1,故选:D.9、C【解析】将甲的所有选修课等级从低到高排列可得甲的中位数,由图可知乙的选修课等级的众数.【详解】由条形图可得,甲同学共有10门选修课,将这10门选修课的成绩等级从低到高排序后,第5,6门的成绩等级分别为3,4,故中位数为,乙成绩等级的众数为5.故选:C.10、B【解析】首先由点的坐标满足圆的方程来确定点在圆上,然后求出过点的圆的切线方程,最后由两直线的垂直关系转化为斜率关系求解.【详解】由题知,圆的圆心,半径.因为,所以点在圆上,所以过点的圆的切线与直线垂直,设切线的斜率,则有,即,解得.因为直线与切线垂直,所以,解得.故选:B.11、B【解析】求得倾斜角的正切值即得【详解】k=tan120°=.故选:B12、B【解析】执行程序框图,第一次循环,,满足;第二次循环,,满足;第三次循环,,不满足,输出,故选B.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.二、填空题:本题共4小题,每小题5分,共20分。13、②③【解析】在矩形中,过点作的垂线,垂足分别为,对于①,连接,假设存在某个位置,使得,则可得到,进而得矛盾,可判断;对于②在翻折过程中,当平面平面时,三棱锥的体积取得最大值,再根据几何关系计算即可;对于③,由题知,,设平面与平面所成的二面角为,进而得,进而得异面直线与所成角的余弦值的范围为,即可判断.【详解】解:如图1,在矩形中,过点作的垂线,垂足分别为,则在在翻折过程中,形成如图2的几何体,故对于①,连接,假设存在某个位置,使得,由于,,所以平面,所以,这与图1中的与不垂直矛盾,故错误;对于②在翻折过程中,当平面平面时,三棱锥的体积取得最大值,此时,体积为,故三棱锥的体积不大于,故正确;对于③,,,由②的讨论得,所以,所以,设翻折过程中,平面与平面所成的二面角为,所以,故,由于要使直线与为异面直线,所以,所以,所以,所以异面直线与所成角的余弦值的范围为,由于,所以在翻折过程中,存在某个位置,使得异面直线与所成角为45°.故答案为:②③14、##【解析】根据题意,由“追梦数列”的定义可得“追梦数列”是公比为的等比数列,进而可得若数列为“追梦数列”,则为公比为3的等比数列,进而由等比数列的通项公式可得答案【详解】根据题意,“追梦数列”满足,即,则数列是公比为的等比数列.若数列为“追梦数列”,则.故答案为:.15、【解析】将双曲线方程化成标准方程,得到且,利用双曲线渐近线方程,可得结果【详解】把双曲线化成标准方程为,且,双曲线的渐近线方程为,即故答案为【点睛】本题主要考查利用双曲线的方程求渐近线方程,意在考查对基础知识的掌握情况,属于基础题.若双曲线方程为,则渐近线方程为;若双曲线方程为,则渐近线方程为.16、1717【解析】利用等差数列的前项和公式可求所有数的和.【详解】100以内的正整数中,被3除余1由小到大构成等差数列,其首项为1,公差为3,共有项,它们的和为,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)运用代入法直接求解即可;(2)设出直线的方程与抛物线方程联立,结合一元二次方程根与系数关系、平面向量数量积的坐标表示公式进行求解即可.【小问1详解】由已知可得:;【小问2详解】的斜率不为设,,∴OA→⋅因为直线与抛物线交于两点两点在轴的两侧,所以,即过定点.【点睛】关键点睛:运用一元二次方程根与系数关系是解题的关键.18、(1)证明见解析;(2).【解析】(1)由正方体性质易得,根据线面平行的判定可得面、面,再由面面平行的判定证明结论;(2)建立空间直角坐标系,设正方体棱长为2,确定相关点的坐标,进而求两个半平面的法向量,应用空间向量夹角的坐标表示求二面角的余弦值【小问1详解】在正方体中,且,且,且,则四边形为平行四边形,即有,因为面,面,则平面,同理平面,又,面,则平面平面E.小问2详解】以点为坐标原点,,,所在直线分别为、、轴建立如图所示的空间直角坐标系,设正方体的棱长为,则,,所以,,设平面的法向量为,则,令,则由平面,则是平面的一个法向量设平面与平面夹角,,因此平面与平面所成锐二面角的余弦值为19、(1)(2)为定值,该定值为2【解析】(1)先根据焦点形式设出椭圆方程和焦距,根据椭圆经过和半焦距为3易得椭圆的标准方程;(2)设,分别表示出直线方程,进而求得点的纵坐标,点横坐标,即可表示出,即可求得答案【小问1详解】由焦点坐标可知,椭圆的焦点在轴上,所以设椭圆:,焦距为,因为椭圆经过点,焦点为所以,,解得,所以椭圆的标准方程为;【小问2详解】设,由椭圆的方程可知,因为,则直线,由已知得,直线斜率均存在,则直线,令得,直线,令得,因为点在第一象限,所以,,则,又因为,即,所以所以为定值,该定值为2.20、(1)(2)或【解析】(1)由两条直线垂直可设直线的方程为,将点的坐标代入计算即可;(2)当直线过原点时,根据直线的点斜式方程即可得出结果;当直线不过原点时可设直线的方程为,将点的坐标代入计算即可.【小问1详解】解:因为直线与直线垂直所以,设直线的方程为,因为直线过点,所以,解得,所以直线的方程为【小问2详解】解:当直线过原点时,斜率为,由点斜式求得直线的方程是,即当直线不过原点时,设直线的方程为,把点代入方程得,所以直线的方程是综上,所求直线的方程为或21、(1),;(2).【解析】(1)由求得的递推关系,结合可得其为等比数列,从而得通项公式,代入计算得;(2)求出,由错位相减法求和【详解】(1)由可得,,即,易知,故..(2)由(1)可知,①,②,①-②得,.【点睛】方法点睛:本题主要考查等比数列的通项公式及错位相减法求和.数列求和的常用方法:公式法、错位相减法、裂项相消法、分组(并项)求和法,倒序
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年陕西邮政校园招聘(含榆林岗)备考题库及答案详解一套
- 2025年深圳证券交易所人才引进备考题库带答案详解
- 南昌大学附属眼科医院2026年高层次人才招聘9人备考题库完整参考答案详解
- 统计师初级统计基础题目及答案
- 福建华南女子职业学院2025年秋季人才招聘备考题库含答案详解
- 2025年重庆气体压缩机厂有限责任公司招聘备考题库带答案详解
- 2025年上海外国语大学国际教育学院招聘备考题库完整参考答案详解
- 2025年共青团中央所属单位招聘66人备考题库完整答案详解
- 2025年云南省红河州和信公证处招聘备考题库附答案详解
- 班级线上颁奖课件
- 2025年四级营养师考试题库(含答案)
- 2025团员教育评议大会
- 服装店入股协议合同
- 汽车金融公司培训
- 一套近乎完美的公司财务流程(包括岗位设置)
- (正式版)JBT 9229-2024 剪叉式升降工作平台
- 2023年上海市春考数学试卷(含答案)
- 中国石油大学(华东)自动控制课程设计 双容水箱系统的建模、仿真于控制-2
- 潘谢矿区西淝河、泥河、济河、港河水体下安全开采可行性论证报告
- 创业人生(上海大学)【超星尔雅学习通】章节答案
- GB/T 4957-2003非磁性基体金属上非导电覆盖层覆盖层厚度测量涡流法
评论
0/150
提交评论