新疆阿克苏市农一师高级中学2026届高二上数学期末经典试题含解析_第1页
新疆阿克苏市农一师高级中学2026届高二上数学期末经典试题含解析_第2页
新疆阿克苏市农一师高级中学2026届高二上数学期末经典试题含解析_第3页
新疆阿克苏市农一师高级中学2026届高二上数学期末经典试题含解析_第4页
新疆阿克苏市农一师高级中学2026届高二上数学期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆阿克苏市农一师高级中学2026届高二上数学期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,当a为3和5时,点P的轨迹分别为()A.双曲线和一条直线 B.双曲线和一条射线C.双曲线的一支和一条直线 D.双曲线的一支和一条射线2.已知F是抛物线的焦点,直线l是抛物线的准线,则F到直线l的距离为()A.2 B.4C.6 D.83.已知A,B,C三点不共线,O是平面ABC外一点,下列条件中能确定点M与点A,B,C一定共面的是A. B.C. D.4.抛物线的焦点到双曲线的渐近线的距离是()A. B.C.1 D.5.设等比数列的前项和为,若,,则()A.66 B.65C.64 D.636.已知向量,则下列结论正确的是()A.B.C.D.7.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了多年,如图是由“杨辉三角”拓展而成的三角形数阵,记为图中虚线上的数,,,,…构成的数列的第项,则的值为()A. B.C. D.8.已知直线过抛物线C的焦点,且与C的对称轴垂直,与C交于A,B两点,P为C的准线上一点,若的面积为36,则等于()A.36 B.24C.12 D.69.若函数的图象如图所示,则函数的导函数的图象可能是()A. B.C D.10.曲线与曲线()的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等11.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为A. B.C. D.12.数列满足,且,是函数的极值点,则的值是()A.2 B.3C.4 D.5二、填空题:本题共4小题,每小题5分,共20分。13.圆与x轴相切于点A.点B在圆C上运动,则AB的中点M的轨迹方程为______(当点B运动到与A重合时,规定点M与点A重合);点N是直线上一点,则的最小值为______14.在数列中,若,则该数列的通项公式__________15.已知抛物线,则的准线方程为______.16.设分别是平面的法向量,若,则实数的值是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在数列中,,且.(1)证明;数列是等比数列.(2)若,求数列的前n项和.18.(12分)如图,在四棱锥中,底面ABCD为直角梯形,,,平面底面ABCD,Q为AD的中点,M是棱PC的中点,,,(1)求证:;(2)求直线PB与平面MQB所成角的正弦值19.(12分)如图,在△ABC中,内角A、B、C的对边分别为a、b、c.已知b=3,c=6,,且AD为BC边上的中线,AE为∠BAC的角平分线(1)求及线段BC的长;(2)求△ADE的面积20.(12分)已知正项数列的前项和满足(1)求数列的通项公式;(2)若,求数列的前项和.21.(12分)某校高二年级全体学生参加了一次数学测试,学校利用简单随机抽样的方法从甲班、乙班各抽取五名同学的数学测试成绩(单位:分)得到如下茎叶图,若甲、乙两班数据的中位数相等且平均数也相等.(1)求出茎叶图中m和n的值:(2)若从86分以上(不含86分)的同学中随机抽出两名,求此两人都来自甲班的概率.22.(10分)已知数列的前n项和为,且.(1)求的通项公式;.(2)求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由双曲线定义结合参数a的取值分类讨论而得.【详解】依题意得,当时,,且,点P的轨迹为双曲线的右支;当时,,故点P的轨迹为一条射线.故选D.故选:D2、B【解析】根据抛物线定义即可求解【详解】由得,所以F到直线l的距离为故选:B3、D【解析】首先利用坐标法,排除错误选项,然后对符合的选项验证存在使得,由此得出正确选项.【详解】不妨设.对于A选项,,由于的竖坐标,故不在平面上,故A选项错误.对于B选项,,由于的竖坐标,故不在平面上,故B选项错误.对于C选项,,由于的竖坐标,故不在平面上,故C选项错误.对于D选项,,由于的竖坐标为,故在平面上,也即四点共面.下面证明结论一定成立:由,得,即,故存在,使得成立,也即四点共面.故选:D.【点睛】本小题主要考查空间四点共面的证明方法,考查空间向量的线性运算,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.4、B【解析】先确定抛物线的焦点坐标,和双曲线的渐近线方程,再由点到直线的距离公式即可求出结果.【详解】因为抛物线的焦点坐标为,双曲线的渐近线方程为,由点到直线的距离公式可得.故选:B5、B【解析】根据等比数列前项和的片段和性质求解即可.【详解】解:由题知:,,,所以,,成等比数列,即5,15,成等比数列,所以,解得.故选:B.6、D【解析】由题可知:,,,故选;D7、B【解析】根据杨辉三角可得数列的递推公式,结合累加法可得数列的通项公式与.【详解】由已知可得数列的递推公式为,且,且,故,,,,,等式左右两边分别相加得,,故选:B.8、C【解析】设抛物线方程为,根据题意由求解.【详解】设抛物线方程为:,因为直线过抛物线C的焦点,且与C的对称轴垂直,所以,又P为C的准线上一点,所以点P到直线AB的距离为p,所以,解得,所以,故选:C9、C【解析】由函数的图象可知其单调性情况,再由导函数与原函数的关系即可得解.【详解】由函数的图象可知,当时,从左向右函数先增后减,故时,从左向右导函数先正后负,故排除AB;当时,从左向右函数先减后增,故时,从左向右导函数先负后正,故排除D.故选:C.10、D【解析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.【详解】曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为;曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为.对照选项可知:焦距相等.故选:D.11、A【解析】根据题意可求出正方体的上底面与球相交所得截面圆的半径为4cm,再根据截面圆半径,球的半径以及球心距的关系,即可求出球的半径,从而得到球的体积【详解】设球的半径为cm,根据已知条件知,正方体的上底面与球相交所得截面圆的半径为4cm,球心到截面圆的距离为cm,所以由,得,所以球的体积为故选:A【点睛】本题主要考查球的体积公式的应用,以及球的结构特征的应用,属于基础题12、C【解析】利用导数即可求出函数的极值点,再利用等差数列的性质及其对数的运算性质求解即可【详解】由,得,因为,是函数的极值点,所以,是方程两个实根,所以,因为数列满足,所以,所以数列为等差数列,所以,所以,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】将点M的轨迹转化为以AC为直径的圆,再确定圆心及半径即可求解,将的最小值转化为点到圆心的距离再减去半径可求解.【详解】依题意得,,因为M为AB中点,所以,所以点M的轨迹是以AC为直径的圆,又AC中点为,,所以点M的轨迹方程为,圆心,设关于直线的对称点为,则有,解得,所以,所以由对称性可知的最小值为故答案为:,14、【解析】由已知可得数列是以为首项,3为公比的等比数列,结合等比数列通项公式即可得解.【详解】解:由在数列中,若,则数列是以为首项,为公比的等比数列,由等比数列通项公式可得,故答案为:.【点睛】本题考查了等比数列通项公式的求法,重点考查了运算能力,属基础题.15、##【解析】根据抛物线的方程求出的值即得解.【详解】解:因为抛物线,所以,所以的准线方程为.故答案为:16、4【解析】根据分别是平面的法向量,且,则有求解.【详解】因为分别是平面的法向量,且所以所以解得故答案为:4【点睛】本题主要考查空间向量垂直,还考查了运算求解的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行证明即可;(2)运用裂项相消法进行求解即可.【小问1详解】∵,∴,又∵,∴,∴数列是首项为0,公差为1的等差数列,∴,∴,从而,∴数列是首项为2,公比为2的等比数列;【小问2详解】由(1)知,则,∴,∴.18、(1)证明见解析(2)【解析】(1)根据等腰三角形可得,再由面面垂直的性质得出线面垂直,即可求证;(2)建立空间直角坐标系,利用向量法求线面角.【小问1详解】因为Q为AD的中点,,所以,又因为平面底面ABCD,平面底面,平面PAD,所以平面ABCD,又平面ABCD,所以【小问2详解】由题可知QA、QB、QP两两互相垂直,以QA为x轴、QB为y轴、QP为z轴建立空间坐标系,如图,根据题意,则,,,,,由M是棱PC的中点可知,,设平面MQB的法向量为,,,则,即令,则,,故平面MQB的一个法向量为,所以,所以直线PB与平面MQB所成角的正弦值为19、(1),BC=6(2)【解析】(1)利用正弦定理、二倍角公式化简已知条件,求得,结合余弦定理求得,也即.(2)求得三角形的面积,结合角平分线、中线的性质求得三角形的面积.小问1详解】∵,∴,∴,∴由余弦定理得(负值舍去),即BC=6.【小问2详解】∵,,∴,∴,∵AE平分∠BAC,,由正弦定理得:,其中,∴,∵AD为BC边的中线,∴,∴.20、(1)(2)【解析】小问1:利用通项公式与的关系即可求出;小问2:根据(1)可得,结合错位相减法即可求出前n项和【小问1详解】当时,,.当时,,…①,,…②①②得:,即:.,是以为首项,以为公差的等差数列,;【小问2详解】由(1)可知,则,…①两边同乘得:,…②①②得:,.21、(1),(2)【解析】(1)根据茎叶图得甲班中位数为,由此能求出,根据由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,从86分以上(不含86分)的同学中随机抽出两名,用列举法写出基本事件总数,再利用古典概型的概率计算公式即可求解.【小问1详解】根据茎叶图可知1班中位数为86,则,又∵,且故【小问2详解】由(1)可知,甲班86分以上有2人,乙班86以上有2人设甲班86分以上2人为,,乙班86分以上2人为,,从中任取两名同学共有,,,,,共有6组基本事件,且每组出现都是等可能的记:“从8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论