版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宣城市七校2026届高一上数学期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.幂函数的图象经过点,则()A.是偶函数,且在上单调递增B.是偶函数,且在上单调递减C.是奇函数,且在上单调递减D.既不是奇函数,也不是偶函数,在上单调递增2.若方程有两个不相等的实数根,则实根的取值范围是()A. B.C. D.3.下列函数中,既是奇函数又在上有零点的是A. B.C D.4.已知集合,,则集合A. B.C. D.5.已知锐角终边上一点A的坐标为,则的弧度数为()A.3 B.C. D.6.已知函数,且,则A.3 B.C.9 D.7.函数(,且)的图象恒过定点,且点在角的终边上,则()A. B.C. D.8.已知是自然对数的底数,函数的零点为,函数的零点为,则下列不等式中成立的是A. B.C. D.9.已知,,则下列不等式正确的是()A. B.C. D.10.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数图象的特征,如函数的大致图象是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在平行四边形中,为上的中点,若与对角线相交于,且,则__________12.函数为奇函数,且对任意互不相等的,,都有成立,且,则的解集为______13.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是______答案】14.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为,,且,与的夹角为.给出以下结论:①越大越费力,越小越省力;②的范围为;③当时,;④当时,.其中正确结论的序号是______.15.计算的值为__________16.已知直线,直线若,则______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)是偶函数,且x≤0时,f(x)=-(其中e为自然对数的底数)(Ⅰ)比较f(2)与f(-3)大小;(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,求实数a的取值范围.18.已知函数的部分图象如图所示.(1)求函数的解析式;(2)求方程在区间内的所有实数根之和.19.已知函数的图象在直线的下方且无限接近直线.(1)判断函数的单调性(写出判断说明即可,无需证明),并求函数解析式;(2)判断函数的奇偶性并用定义证明;(3)求函数的值域.20.已知向量,向量分别为与向量同向的单位向量.(Ⅰ)求向量与的夹角;(Ⅱ)求向量的坐标.21.设函数.求函数的单调区间,对称轴及对称中心.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】设幂函数方程,将点坐标代入,可求得的值,根据幂函数的性质,即可求得答案.【详解】设幂函数的解析式为:,将代入解析式得:,解得,所以幂函数,所以既不是奇函数,也不是偶函数,且,所以在上单调递增.故选:D.2、B【解析】方程有两个不相等的实数根,转化为有两个不等根,根据图像得到只需要故答案为B.3、D【解析】选项中的函数均为奇函数,其中函数与函数在上没有零点,所以选项不合题意,中函数为偶函数,不合题意;中函数的一个零点为,符合题意,故选D.4、B【解析】利用一元二次方程的解法化简集合化简集合,利用并集的定义求解即可.【详解】由一元二次方程的解法化简集合,或,,或,故选B.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合.5、C【解析】先根据定义得正切值,再根据诱导公式求解【详解】由题意得,选C.【点睛】本题考查三角函数定义以及诱导公式,考查基本分析化简能力,属基础题.6、C【解析】利用函数的奇偶性以及已知条件转化求解即可【详解】函数g(x)=ax3+btanx是奇函数,且,因为函数f(x)=ax3+btanx+6(a,b∈R),且,可得=﹣3,则=﹣g()+6=3+6=9故选C【点睛】本题考查函数的奇偶性的应用,函数值的求法,考查计算能力.已知函数解析式求函数值,可以直接将变量直接代入解析式从而得到函数值,直接代入较为繁琐的题目,可以考虑函数的奇偶性的应用,利用部分具有奇偶性的特点进行求解,就如这个题目.7、D【解析】根据对数型函数恒过定点得到定点,再根据点在角的终边上,由三角函数的定义得,即可得到答案.【详解】由于函数(,且)的图象恒过定点,则,点,点在角的终边上,.故选:D.8、A【解析】解:由f(x)=ex+x﹣2=0得ex=2﹣x,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出函数y=ex,y=lnx,y=2﹣x的图象如图:∵函数f(x)=ex+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,∴y=ex与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b,由图象知a<1<b,故选A考点:函数的零点9、C【解析】利用指数函数、对数函数的单调性即可求解.【详解】由为单调递减函数,则,为单调递减函数,则,为单调递增函数,则故.故选:C【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.10、A【解析】先判断函数的奇偶性,再根据特殊点的函数值选出正确答案.【详解】对于,∵,∴为偶函数,图像关于y轴对称,排除D;由,排除B;由,排除C.故选:A.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】由题意如图:根据平行线分线段成比例定理,可知,又因为,所以根据三角形相似判定方法可以知道∵为的中点∴相似比为∴∴故答案为312、【解析】由条件可得函数的单调性,结合,分和利用单调性可解.【详解】因为,时,,所以在上单调递减,又因为为奇函数,且,所以在上单调递减,且.当时,不等式,得;当时,不等式,得.综上,不等式的解集为.故答案:13、【解析】设出该点的坐标,根据题意列方程组,从而求得该点到原点的距离【详解】设该点的坐标是(x,y,z),∵该点到三个坐标轴的距离都是1,∴x2+y2=1,x2+z2=1,y2+z2=1,∴x2+y2+z2,∴该点到原点的距离是故答案为【点睛】本题考查了空间中点的坐标与应用问题,是基础题14、①④.【解析】根据为定值,求出,再对题目中的命题分析、判断正误即可.【详解】解:对于①,由为定值,所以,解得;由题意知时,单调递减,所以单调递增,即越大越费力,越小越省力;①正确.对于②,由题意知,的取值范围是,所以②错误.对于③,当时,,所以,③错误.对于④,当时,,所以,④正确.综上知,正确结论的序号是①④.故答案为:①④.【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题15、【解析】.16、【解析】由两条直线垂直,可得,解方程即可求解.详解】若,则,解得,故答案为:【点睛】本题考查了由两条直线互相垂直,求参数的范围,熟练掌握直线垂直的充要条件是解题的关键,考查了运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I);(II).【解析】(Ⅰ)由偶函数在时递减,时递增,即可判断(2)和的大小关系;(Ⅱ)由题意可得在时有且只有一个实根,可得在时有且只有一个实根,可令,则,求得导数判断单调性,计算可得所求范围【详解】解:(Ⅰ)函数f(x)是偶函数,且x≤0时,f(x)=-,可得f(x)在x<0时递减,x>0时递增,由f(-3)=f(3),可得f(2)<f(3),即有f(2)<f(-3);(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,即为2(1-3a)ex+2a+=-在x>0时有且只有一个实根,可得3a=在x>0时有且只有一个实根,可令t=ex(t>1),则h(t)=,h′(t)=,在t>1时,h′(t)<0,h(t)递减,可得h(t)∈(0,),则3a∈(0,),即a∈(0,)另解:令t=ex(t>1),则h(t)==1+,可令k=4t+7(k>11),可得h(t)=1+,由3k+在k>11递增,可得h(t)在k>11递减,可得h(t)∈(0,),则3a∈(0,),即a∈(0,)【点睛】本题考查函数的奇偶性和单调性的判断和运用,考查函数方程的转化思想,以及构造函数法,运用导数判断单调性,考查化简整理的运算能力,属于中档题.18、(1)(2)【解析】(1)由图像得,并求解出周期为,从而得,再代入最大值,利用整体法,从而求解得,可得解析式为;(2)作出函数与的图像,可得两个函数在有四个交点,从而得有四个实数根,再利用三角函数的对称性计算得实数根之和.【小问1详解】由图可知,,∴∴,又点在的图象上∴,∴,,,∵,∴,∴.【小问2详解】由图得在上的图象与直线有4个交点,则方程在上有4个实数根,设这4个实数根分别为,,,,且,由,得所以可知,关于直线对称,∴,关于直线对称,∴,∴【点睛】求三角函数的解析式时,由即可求出;确定时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标,则令或,即可求出,否则需要代入点的坐标,利用一些已知点的坐标代入解析式,再结合函数的性质解出和,若对,的符号或对的范围有要求,则可用诱导公式变换使其符合要求.19、(1)函数在上单调递增,(2)奇函数,证明见解析(3)【解析】(1)根据函数的单调性情况直接判断;(2)根据奇偶性的定义直接判断;(3)由奇偶性直接判断值域.【小问1详解】因为随着增大,减小,即增大,故随增大而增大,所以函数在上单调递增.由的图象在直线下方,且无限接近直线,得,所以函数的解析式.【小问2详解】由(1)得,整理得,函数定义域关于原点对称,,所以函数是奇函数.小问3详解】方法一:由(1)知,由(2)知,函数图象关于原点中心对称,故,所以函数的值域为.方法二:由,得,得,得,得,得,所以函数的值域为.20、(Ⅰ)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基本护理技能指南
- 委托创作合同法律性质的多维度剖析与实践审视
- 小学安全教育课件家长会
- 奥马珠单抗治疗中重度哮喘的疗效及机制探究:基于多中心临床数据的深度剖析
- 套利组合视角下均值-VaR模型的深度剖析与实践应用
- 胃癌术后心理护理
- 自然分娩的分娩球使用技巧
- 雾化培训课件
- 医保工作总结(3篇)
- 教师学史力行研讨发言材料简短范文
- 2025天津大学管理岗位集中招聘15人笔试备考重点题库及答案解析
- 2026年人教版(2024)初中美术七年级上册期末综合测试卷及答案(四套)
- 供应饭菜应急预案(3篇)
- 2026年辽宁理工职业大学单招职业适应性测试题库及参考答案详解
- 生物样本库课件
- 2026苏州大学附属第二医院(核工业总医院)护理人员招聘100人(公共基础知识)测试题带答案解析
- 2026中国储备粮管理集团有限公司湖北分公司招聘33人笔试历年题库及答案解析(夺冠)
- 《马原》期末复习资料
- 食品生产企业GMP培训大纲
- 《图形创意与应用》全套教学课件
- 科研成果评审专家意见模板
评论
0/150
提交评论