2026届浙江省杭州二中高二上数学期末综合测试模拟试题含解析_第1页
2026届浙江省杭州二中高二上数学期末综合测试模拟试题含解析_第2页
2026届浙江省杭州二中高二上数学期末综合测试模拟试题含解析_第3页
2026届浙江省杭州二中高二上数学期末综合测试模拟试题含解析_第4页
2026届浙江省杭州二中高二上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届浙江省杭州二中高二上数学期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.焦点为的抛物线标准方程是()A. B.C. D.2.已知复数满足(其中为虚数单位),则复数的虚部为()A. B.C. D.3.若椭圆的右焦点与抛物线的焦点重合,则椭圆的离心率为()A. B.C. D.4.已知直线与直线平行,则实数a值为()A.1 B.C.1或 D.5.已知向量a→=(1,1,k),A. B.C. D.6.的展开式中的系数是()A. B.C. D.7.设函数在定义域内可导,的图象如图所示,则导函数的图象可能为()A. B.C. D.8.已知,是双曲线的左、右焦点,点A是的左顶点,为坐标原点,以为直径的圆交的一条渐近线于、两点,以为直径的圆与轴交于两点,且平分,则双曲线的离心率为()A. B.2C. D.39.、是椭圆的左、右焦点,点在椭圆上,,过作的角平分线的垂线,垂足为,则的长为A.1 B.2C.3 D.410.已知数列是等差数列,其前n项和为,则下列说法错误的是()A.数列一定是等比数列 B.数列一定是等差数列C.数列一定是等差数列 D.数列可能是常数数列11.如图,某绿色蔬菜种植基地在A处,要把此处生产的蔬菜沿道路或运送到形状为四边形区域的农贸市场中去,现要求在农贸市场中确定一条界线,使位于界线一侧的点沿道路运送蔬菜较近,而另一侧的点沿道路运送蔬菜较近,则该界线所在曲线为()A.圆 B.椭圆C.双曲线 D.抛物线12.已知函数,若存在唯一的零点,且,则的取值范围是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知p:“”为真命题,则实数a的取值范围是_________.14.已知是双曲线的左、右焦点,点M是双曲线E上的任意一点(不是顶点),过作角平分线的垂线,垂足为N,O是坐标原点.若,则双曲线E的渐近线方程为__________15.如图,正四棱锥的棱长均为2,点E为侧棱PD的中点.若点M,N分别为直线AB,CE上的动点,则MN的最小值为______16.已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,,.(1)证明:数列是等比数列,并求其通项公式;(2)若,求数列的前项和.18.(12分)如图,菱形的边长为4,,矩形的面积为8,且平面平面(1)证明:;(2)求C到平面的距离.19.(12分)设命题对于任意,不等式恒成立.命题实数a满足(1)若命题p为真,求实数a的取值范围;(2)若“p或q”为真,“p且q”为假,求实数a的取值范围20.(12分)已知函数.(1)当时,求函数在时的最大值和最小值;(2)若函数在区间存在极小值,求a的取值范围.21.(12分)已知抛物线C:,经过的直线与抛物线C交于A,B两点(1)求的值(其中为坐标原点);(2)设F为抛物线C的焦点,直线为抛物线C的准线,直线是抛物线C的通径所在的直线,过C上一点P()()作直线与抛物线相切,若直线与直线相交于点M,与直线相交于点N,证明:点P在抛物线C上移动时,恒为定值,并求出此定值22.(10分)已知数列满足,(1)设,求证:数列是等比数列;(2)求数列的前项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设抛物线的方程为,根据题意,得到,即可求解.【详解】由题意,设抛物线的方程为,因为抛物线的焦点为,可得,解得,所以抛物线的方程为.故选:D.2、A【解析】由题目条件可得,即,然后利用复数的运算法则化简.【详解】因为,所以,则故复数的虚部为.故选:A.【点睛】本题考查复数的相关概念及复数的乘除运算,按照复数的运算法则化简计算即可,较简单.3、B【解析】求出抛物线的焦点坐标,可得出的值,进而可求得椭圆的离心率.【详解】抛物线的焦点坐标为,由已知可得,可得,因此,该椭圆的离心率为.故选:B.4、A【解析】根据两直线平行的条件列方程,化简求得,检验后确定正确答案.【详解】由于直线与直线平行,所以,或,当时,两直线方程都为,即两直线重合,所以不符合题意.经检验可知符合题意.故选:A5、D【解析】根据向量的坐标运算和向量垂直数量积为0可解.【详解】解:根据题意,易得a→∵与两向量互相垂直,∴0+2+k+2=0,解得.故选:D6、B【解析】根据二项式定理求出答案即可.【详解】的展开式中的系数是故选:B7、D【解析】根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.8、B【解析】由直径所对圆周角是直角,结合双曲线的几何性质和角平分线定义可解.【详解】由圆的性质可知,,,所以,因为,所以又因为平分,所以,由,得,所以,即所以故选:B9、A【解析】延长交延长线于N,则选:A.【点睛】涉及两焦点问题,往往利用椭圆定义进行转化研究,而角平分线性质可转化到焦半径问题,两者切入点为椭圆定义.10、B【解析】可根据已知条件,设出公差为,选项A,可借助等比数列的定义使用数列是等差数列,来进行判定;选项B,数列,可以取,即可判断;选项C,可设,表示出再进行判断;选项D,可采用换元,令,求得的关系即可判断.【详解】数列是等差数列,设公差为,选项A,数列是等差数列,那么为常数,又,则数列一定是等比数列,所以选项A正确;选项B,当时,数列不存在,故该选项错误;选项C,数列是等差数列,可设(A、B为常数),此时,,则为常数,故数列一定是等差数列,所以该选项正确;选项D,,则,当时,,此时数列可能是常数数列,故该选项正确.故选:B.11、C【解析】设是界限上的一点,则,即,再根据双曲线的定义即可得出答案.【详解】解:设是界限上的一点,则,所以,即,在中,,所以点的轨迹为双曲线,即该界线所在曲线为双曲线.故选:C.12、C【解析】当时,,函数有两个零点和,不满足题意,舍去;当时,,令,得或.时,;时,;时,,且,此时在必有零点,故不满足题意,舍去;当时,时,;时,;时,,且,要使得存在唯一的零点,且,只需,即,则,选C考点:1、函数的零点;2、利用导数求函数的极值;3、利用导数判断函数的单调性二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据条件将问题转化不等式在上有解,则,由此求解出的取值范围.【详解】因为“”为真命题,所以不等式在上有解,所以,所以,故答案为:.14、【解析】延长交于点,利用角平分线结合中位线和双曲线定义求得的关系,然后利用,及渐近线方程即可求得结果.【详解】延长交于点,∵是的平分线,,,又是中点,所以,且,又,,,又,双曲线E的渐近线方程为故答案为:.15、【解析】根据题意,先建立空间直角坐标系,然后写出相关点的坐标,再写出相关的向量,然后根据点分别为直线上写出点的坐标,这样就得到,然后根据的取值范围而确定【详解】建立如图所示的空间直角坐标系,则有:,,,,,可得:设,且则有:,可得:则有:故则当且仅当时,故答案为:16、【解析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知,由中位线定理可得,设可得,联立方程可解得(舍),点在椭圆上且在轴的上方,求得,所以方法2:焦半径公式应用解析1:由题意可知,由中位线定理可得,即求得,所以.【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,;(2).【解析】(1)由已知条件,可得为常数,从而得证数列是等比数列,进而可得数列的通项公式;(2)由(1)可得,又,所以,所以,利用错位相减法即可求解数列的前项和.【小问1详解】证明:由题意,因为,,,所以,,所以数列是以2为首项,3为公比的等比数列,所以;【小问2详解】解:由(1)可得,又,所以,所以,所以,所以,,所以,所以.18、(1)证明见解析.(2)【解析】(1)利用线面垂直的性质证明出;(2)利用等体积转换法,先求出O到平面AEF的距离,再求C到平面的距离.【小问1详解】在矩形中,.因为平面平面,平面平面,所以平面,所以.【小问2详解】设AC与BD的交点为O,则C到平面AEF的距离为O到平面AEF的距离的2倍.因为菱形ABCD的边长为4且,所以.因为矩形BDFE的面积为8,所以BE=2.,,则三棱锥的体积.在△AEF中,,所以.记O到平面AEF的距离为d.由得:,解得:,所以C到平面AEF的距离为.19、(1)(2)【解析】(1)由即可获解(2)p、q一真一假,分情况讨论即可【小问1详解】由命题为真,得任意,不等式恒成立所以即所以实数的取值范围为【小问2详解】由命题为真,得因为“或”为真,“且”为假,所以p、q一真一假若真假,则,即若假真,即所以实数的取值范围为20、(1)最大值为9,最小值为;(2).【解析】(1)利用导数研究函数的单调性,进而确定在的极值、端点值,比较它们的大小即可知最值.(2)讨论参数a的符号,利用导数研究的单调性,结合已知区间的极值情况求参数a的范围即可.【小问1详解】由题,时,,则,令,得或1,则时,,单调递增;时,,单调递减;时,,单调递增.∴在时取极大值,在时取极小值,又,,综上,在区间上取得的最大值为9,最小值为.小问2详解】,且,当时,单调递增,函数没有极值;当时,时,单调递增;时,单调递减;时,,单调递增.∴在取得极大值,在取得极小值,则;当时,时,单调递增;时,单调递减;时,,单调递增.∴在取得极大值,在取得极小值,由得:.综上,函数在区间存在极小值时a的取值范围是.21、(1)(2)证明见解析,定值为【解析】(1)设出直线的方程并与抛物线方程联立,结合根与系数关系求得.(2)求得过点的抛物线的切线方程,由此求得两点的坐标,通过化简来证得为定值,并求得定值.【小问1详解】依题意可知直线的斜率不为零,设直线的方程为,设,,消去并化简得,所以,所以.小问2详解】抛物线方程为,焦点坐标为,准线,通径所在直线,在抛物线上,且,所以过点的抛物线的切线的斜率存在且不为零,设过点的切线方程为,由消去并化简得,,将代入上式并化简得,解得,所以切线方程为,令得,令得,,将代入上式并化简得,所以为定值,且定值为.22、(1)证明见解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论