版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届北京市对外经贸大学附属中学高二上数学期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题,,则A., B.,C., D.,2.双曲线:的实轴长为()A. B.C.4 D.23.已知a、b是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是()A.若a∥α,a∥b,则b∥α B.若a∥α,a∥β,则α∥βC.若α⊥γ,β⊥γ,则α∥β D.若a⊥α,b⊥α,则a∥b4.已知直线,,若,则实数()A. B.C.1 D.25.已知圆的半径为,平面上一定点到圆心的距离,是圆上任意一点.线段的垂直平分线和直线相交于点,设点在圆上运动时,点的轨迹为,当时,轨迹对应曲线的离心率取值范围为()A. B.C. D.6.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块 B.3474块C.3402块 D.3339块7.已知圆与直线,则圆上到直线的距离为1的点的个数是()A.1 B.2C.3 D.48.给出下列结论:①如果数据的平均数为3,方差为0.2,则的平均数和方差分别为14和1.8;②若两个变量的线性相关性越强,则相关系数r的值越接近于1.③对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为30.则正确的个数是().A.3 B.2C.1 D.09.函数的定义域为,,对任意,,则的解集为()A. B.C. D.10.命题“存在,使得”的否定为()A.存在, B.对任意,C.对任意, D.对任意,11.《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵中,M是的中点,,,,若,则()A. B.C. D.12.在四棱锥中,底面ABCD是正方形,E为PD中点,若,,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正方体的棱长为2,E、F分别是棱、的中点,点P为底面ABCD内(包括边界)的一动点,若直线与平面BEF无公共点,则点P的轨迹长度为______.14.在正方体中,二面角的大小为__________(用反三角表示)15.设双曲线C:的焦点为,点为上一点,,则为_____.16.已知双曲线的两个焦点分别为,,为双曲线上一点,且,则的值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,已知△ABC和△PBC均为正三角形,D为BC的中点(1)求证:平面;(2)若,,求三棱锥的体积18.(12分)如图,在三棱柱中,,D为BC的中点,平面平面ABC(1)证明:;(2)已知四边形是边长为2的菱形,且,问在线段上是否存在点E,使得平面EAD与平面EAC的夹角的余弦值为,若存在,求出CE的长度,若不存在,请说明理由19.(12分)已知为各项均为正数的等比数列,且,.(1)求数列的通项公式;(2)令,求数列前n项和.20.(12分)已知椭圆,其焦点为,,离心率为,若点满足.(1)求椭圆的方程;(2)若直线与椭圆交于两点,为坐标原点,的重心满足:,求实数的取值范围.21.(12分)如图,在长方体中,,若点P为棱上一点,且,Q,R分别为棱上的点,且.(1)求直线与平面所成角的正弦值;(2)求平面与平面的夹角的余弦值.22.(10分)如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的封闭图形.(1)设,,求这个几何体的表面积;(2)设G是弧DF的中点,设P是弧CE上的一点,且.求异面直线AG与BP所成角的大小.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据全称命题与特称命题互为否定的关系,即可求解,得到答案【详解】由题意,根据全称命题与特称命题的关系,可得命题,,则,,故选A【点睛】本题主要考查了含有一个量词的否定,其中解答中熟记全称命题与特称性命题的关系是解答的关键,着重考查了推理与运算能力,属于基础题2、A【解析】根据双曲线的几何意义即可得到结果.【详解】因为双曲线的实轴长为2a,而双曲线中,,所以其实轴长为故选:A3、D【解析】根据空间线、面的位置关系有关定理,对四个选项逐一分析排除,由此得出正确选项.【详解】对于A选项,直线有可能平面内,故A选项错误.对于B选项,两个平面有可能相交,平行于它们的交线,故B选项错误.对于C选项,可能相交,故C选项错误.根据线面垂直的性质定理可知D选项正确.故选:D.4、D【解析】根据两条直线的斜率相等可得结果.【详解】因为直线,,且,所以,故选:D.5、D【解析】分点A在圆内,圆外两种情况,根据中垂线的性质,结合椭圆、双曲线的定义可判断轨迹,再由离心率计算即可求解.【详解】当A在圆内时,如图,,所以的轨迹是以O,A为焦点的椭圆,其中,,此时,,.当A在圆外时,如图,因为,所以轨迹是以O,A为焦点的双曲线,其中,,此时,,.综上可知,.故选:D6、C【解析】第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,设为的前n项和,由题意可得,解方程即可得到n,进一步得到.【详解】设第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,,设为的前n项和,则第一层、第二层、第三层的块数分别为,因为下层比中层多729块,所以,即即,解得,所以.故选:C【点晴】本题主要考查等差数列前n项和有关的计算问题,考查学生数学运算能力,是一道容易题.7、B【解析】根据圆心到直线的距离即可判断.【详解】由得,则圆的圆心为,半径,由,则圆心到直线的距离,∵,∴在圆上到直线距离为1的点有两个.故选:B.8、B【解析】对结论逐一判断【详解】对于①,则的平均数为,方差为,故①正确对于②,若两个变量的线性相关性越强,则相关系数r的绝对值越接近于1,故②错误对于③,对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为,故③正确故正确结论为2个故选:B9、B【解析】构造函数,利用导数判断出函数在上的单调性,将不等式转化为,利用函数的单调性即可求解.【详解】依题意可设,所以.所以函数在上单调递增,又因为.所以要使,即,只需要,故选B.【点睛】本题考查利用函数的单调性解不等式,解题的关键就是利用导数不等式的结构构造新函数来解,考查分析问题和解决问题的能力,属于中等题.10、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.11、C【解析】建立坐标系,坐标表示向量,求出点坐标,进而求出结果.【详解】以为坐标原点,,,的方向分别为x,y,z轴的正方向建立空间直角坐标系.不妨令,则,,,,,.因为,所以,则,,,,则解得,,,故.故选:C12、C【解析】根据向量线性运算法则计算即可.【详解】故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】取BC中点G,证明平面平面确定点P的轨迹,再计算作答.【详解】在正方体中,取BC中点G,连接,如图,因E、F分别是棱、的中点,则,而平面,平面,则有平面,因,则,而,则有四边形为平行四边形,有,又平面,平面,于是得平面,而,平面,因此,平面平面,即线段AG是点P在底面ABCD内的轨迹,,所以点P的轨迹长度为.故答案为:14、【解析】作出二面角的平面角,并计算出二面角的大小.【详解】设,画出图像如下图所示,由于,所以平面,所以,所以是二面角的平面角.所以.所以二面角的大小为.故答案为:15、14【解析】利用双曲线的定义求解即可【详解】由,得,则,因为点为上一点,所以,因为,所以,解得或(舍去),故答案为:1416、2【解析】求得双曲线的a,b,c,不妨设P为双曲线右支上的点,|PF1|=m,|PF2|=n,利用双曲线的定义、余弦定理列出方程组,求出mn即可.【详解】双曲线的a=2,b=1,c=,不妨设P为双曲线右支上的点,|PF1|=m,|PF2|=n,则,①由余弦定理可得,②联立①②可得故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】【小问1详解】因为△ABC和△PBC为正三角形,D为BC的中点,所以,又,所以平面【小问2详解】因为△ABC和△PBC为正三角形,且,所以,又,所以正三角形的面积为,所以.18、(1)证明见解析(2)存在,1【解析】(1)由面面垂直证明线面垂直,进而证明线线垂直;(2)建立空间直角坐标系,利用空间向量进行求解.【小问1详解】∵,且D为BC的中点,∴,因为平面平面ABC,交线为BC,AD⊥BC,AD面ABC,所以AD⊥面,因为面,所以.【小问2详解】假设存在点E,满足题设要求连接,,∵四边形为边长为2的菱形,且,∴为等边三角形,∵D为BC的中点∴,∵平面平面ABC,交线为BC,面,所以面ABC,故以D为原点,DC,DA,分别为x,y,z轴的空间直角坐标系则,,,,设,,设面AED的一个法向量为,则,令,则设面AEC的一个法向量为,则,令,则设平面EAD与平面EAC的夹角为,则解得:,故点E为中点,所以19、(1);(2).【解析】(1)先通过等比数列的基本量运算求出公比,进而求出通项公式;(2)结合(1)求出,然后根据错位相减法求得答案.【小问1详解】设等比数列公比为q,,,,(负值舍去),所以.【小问2详解】,,所以,解得:.20、(1)(2)【解析】(1)运用椭圆的离心率公式,结合椭圆的定义可得在椭圆上,代入椭圆方程,求出,,即可求椭圆的方程;(2)设出直线方程,联立直线和椭圆方程,利用根与系数之间的关系、以及向量数量积的坐标表示进行求解即可.【小问1详解】依题意得,点,满足,可得在椭圆上,可得:,且,解得,,所以椭圆的方程为;【小问2详解】设,,,,,,当时,,此时A,B关于y轴对称,则重心为,由得:,则,此时与椭圆不会有两交点,故不合题意,故;联立与椭圆方程,可得,可得,化为,,,①,设的重心,由,可得②由重心公式可得,代入②式,整理可得可得③①式代入③式并整理得,则,,令,则,可得,,,.【点睛】本题主要考查椭圆的方程以及直线和椭圆的位置关系的应用,利用消元法转化为一元二次方程形式是解决本题的关键.21、(1)(2)【解析】(1)建立如图所示的空间直角坐标系,用空间向量法求线面角;(2)用空间向量法求二面角【小问1详解】以D为坐标原点,射线方向为x,y,z轴正方向建立空间直角坐标系.当时,,所以,设平面的法向量为,所以,即不妨得,,又,所以,则【小问2详解】在长方体中,因为平面,所以平面平面,因为平面与平面交于,因为四边形为正方形,所以,所以平面,即为平面的一个法向量,,所以,又平面的法向量为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年上海市东方公证处招聘公证员助理、辅助人员备考题库完整答案详解
- 3D打印个性化缝合导板的设计与应用
- 2型糖尿病社区综合管理路径优化
- 2025年工作地在合川备考题库重庆一国企招聘及答案详解1套
- 2025年枫亭镇中心卫生院招聘编外工作人员备考题库及答案详解一套
- 2025年第十师北屯面向社会公开引进高层次事业编工作人员备考题库及答案详解一套
- 2025年资阳市人才发展集团有限公司诚聘3名项目人员备考题库带答案详解
- 灰色时尚商务总结汇报模板
- 2025年个旧市医共体卡房分院招聘备考题库及1套参考答案详解
- 2025年广州南沙人力资源发展有限公司招聘公办幼儿园编外工作人员备考题库及1套完整答案详解
- 编制竣工图合同范本
- 新22J01 工程做法图集
- 智慧树知到《艺术与审美(北京大学)》期末考试附答案
- 2024-2025学年上海市长宁区初三一模语文试卷(含答案)
- 钢管支撑强度及稳定性验算
- 全国医疗服务项目技术规范
- 人教版六年级数学下册全册教案
- 医院公共卫生事件应急处理预案
- 智慧校园云平台规划建设方案
- 机械制图公开课课件
- 内镜下治疗知情同意书
评论
0/150
提交评论