2026届山西省忻州市忻府区忻州一中数学高二上期末监测模拟试题含解析_第1页
2026届山西省忻州市忻府区忻州一中数学高二上期末监测模拟试题含解析_第2页
2026届山西省忻州市忻府区忻州一中数学高二上期末监测模拟试题含解析_第3页
2026届山西省忻州市忻府区忻州一中数学高二上期末监测模拟试题含解析_第4页
2026届山西省忻州市忻府区忻州一中数学高二上期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山西省忻州市忻府区忻州一中数学高二上期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若定义在R上的函数满足,则不等式的解集为()A. B.C. D.2.七巧板是一种古老的中国传统智力玩具,顾名思义,是由七块板组成的.这七块板可拼成许多图形(1600种以上),如图所示,某同学用七巧板拼成了一个“鸽子”形状,若从“鸽子”身上任取一点,则取自“鸽子头部”(图中阴影部分)的概率是()A. B.C. D.3.(5分)已知集合A={x|−2<x<4},集合B={x|(x−6)(x+1)<0},则A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|−2<x<−1} D.{x|−1<x<4}4.“﹣3<m<4”是“方程表示椭圆”的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要5.如图所示,用3种不同的颜色涂入图中的矩形A,B,C中,要求相邻的矩形不能使用同一种颜色,则不同的涂法有()ABCA.3种 B.6种C.12种 D.27种6.设R,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.“五一”期间,甲、乙、丙三个大学生外出旅游,已知一人去北京,一人去两安,一人去云南.回来后,三人对去向作了如下陈述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事实是甲、乙、丙三人陈述都只对了一半(关于去向的地点仅对一个).根据以上信息,可判断下面说法中正确的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南8.在等差数列中,已知,则数列的前6项之和为()A.12 B.32C.36 D.379.已知,则的大小关系为()A. B.C. D.10.一部影片在4个单位轮流放映,每个单位放映一场,不同的放映次序有()A.种 B.4种C.种 D.种11.如图,在长方体中,,E,F分别为的中点,则异面直线与所成角的余弦值为()A. B.C. D.12.“”是“直线与直线互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.设与是定义在同一区间上的两个函数,若函数在上有两个不同的零点,则称与在上是“关联函数”.若与在上是“关联函数”,则实数的取值范围是____________.14.已知,为双曲线的左、右焦点,过作的垂线分别交双曲线的左、右两支于B,C两点(如图).若,则双曲线的渐近线方程为______15.设正方形的边长是,在该正方形区域内随机取一个点,则此点到点的距离大于的概率是_____16.设是定义在上的可导函数,且满足,则不等式解集为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在一个盒子中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4,先从盒子中随机取出一个球,该球的编号记为,将球放回盒子中,然后再从盒子中随机取出一个球,该球的编号记为.(1)写出试验的样本空间;(2)求“”的概率.18.(12分)已知函数.(1)求函数f(x)的最小正周期;(2)当时,求函数f(x)的值域.19.(12分)已知椭圆的离心率为,且其左顶点到右焦点的距离为.(1)求椭圆的方程;(2)设点、在椭圆上,以线段为直径的圆过原点,试问是否存在定点,使得到直线的距离为定值?若存在,请求出点坐标;若不存在,请说理由.20.(12分)设椭圆方程为,短轴长,____________.请在①与双曲线有相同的焦点,②离心率,③这三个条件中任选一个补充在上面的横线上,完成以下问题.(1)求椭圆的标准方程;(2)求以点为中点的弦所在的直线方程.21.(12分)已知三角形的内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.22.(10分)已知圆,圆心在直线上(1)求圆的标准方程;(2)求直线被圆截得的弦的长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】构造函数,根据题意,求得其单调性,利用函数单调性解不等式即可.【详解】构造函数,则,故在上单调递减;又,故可得,则,即,解得,故不等式解集为.故选:B.【点睛】本题考察利用导数研究函数单调性,以及利用函数单调性求解不等式,解决本题的关键是根据题意构造函数,属中档题.2、C【解析】设正方形边长为1,求出七巧板中“4”这一块的面积,然后计算概率【详解】设正方形边长为1,由正方形中七巧板形状知“4”这一块是正方形,边长为,面积为,所以概率为故选:C3、D【解析】由(x−6)(x+1)<0,得−1<x<6,从而有B={x|−1<x<6},所以A∩B={x|−1<x<4},故选D4、B【解析】求出方程表示椭圆的充要条件是且,由此可得答案.【详解】因为方程表示椭圆的充要条件是,解得且,所以“﹣3<m<4”是“方程表示椭圆”的必要不充分条件.故选:B【点睛】本题考查了由方程表示椭圆求参数的范围,考查了充要条件和必要不充分条件,本题易错点警示:漏掉,本题属于基础题.5、C【解析】根据给定信息,按用色多少分成两类,再分类计算作答.【详解】计算不同的涂色方法数有两类办法:用3种颜色,每个矩形涂一种颜色,有种方法,用2色,矩形A,C涂同色,有种方法,由分类加法计数原理得(种),所以不同的涂法有12种.故选:C6、A【解析】根据不等式性质判断即可.【详解】若“”,则成立;反之,若,当,时,不一定成立.如,但.故“”是“”的充分不必要条件.故答案为:A.【点睛】本题考查充分条件、必要调价的判断,考查不等式与不等关系,属于基础题.7、D【解析】根据题意,先假设甲去了北京正确,则可分析其他人的陈述是否符合题意,再假设乙去西安正确,分析其他人的陈述是否符合题意,即可得答案.【详解】由题意得,甲、乙、丙三人的陈述都只对了一半,假设甲去了北京正确,对于甲的陈述:则乙去西安错误,则乙去了云南;对于乙的陈述:甲去了西安错误,则丙去了北京正确;对于丙的陈述:甲去了云南错误,乙去了北京也错误,故假设错误.假设乙去了西安正确,对于甲的陈述:则甲去了北京错误,则甲去了云南;对于乙的陈述:甲去了西安错误,则丙去了北京正确;对于丙的陈述:甲去了云南正确,乙去了北京错误,此种假设满足题意,故甲去了云南.故选:D8、C【解析】直接按照等差数列项数性质求解即可.【详解】数列的前6项之和为.故选:C.9、B【解析】构造利用导数判断函数在上单调递减,利用单调性比较大小【详解】设恒成立,函数在上单调递减,.故选:B10、C【解析】根据题意得到一部影片在4个单位轮流放映,相当于四个单位进行全排列,即可得到答案.【详解】一部影片在4个单位轮流放映,相当于四个单位进行全排列,所以不同的放映次序有种,故选:C11、A【解析】利用平行线,将异面直线的夹角问题转化为共面直线的夹角问题,再解三角形.【详解】取BC中点H,BH中点I,连接AI、FI、,因为E为中点,在长方体中,,所以四边形是平行四边形,所以所以,又因为F为的中点,所以,所以,则即为异面直线与所成角(或其补角).设AB=BC=4,则,则,,根据勾股定理:,,,所以是等腰三角形,所以.故B,C,D错误.故选:A.12、A【解析】根据直线垂直求出的范围即可得出.【详解】由直线垂直可得,解得或1,所以“”是“直线与直线互相垂直”的充分不必要条件.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】令得,设函数,则直线与函数在区间上的图象有两个交点,利用导数分析函数的单调性与极值,利用数形结合思想可求得实数的取值范围.【详解】令得,设函数,则直线与函数在区间上的图象有两个交点,,令,可得,列表如下:极小值,,如图所示:由图可知,当时,直线与函数在区间上的图象有两个交点,因此,实数的取值范围是.故答案为:.14、【解析】根据双曲线的定义先计算出,,注意到图中渐近线,于是利用两种不同的表示法列方程求解.【详解】,则,由双曲线的定义及在右支上,,又在左支上,则,则,在中,由余弦定理,,而图中渐近线,于是,得,于是,不妨令,化简得,解得,渐近线就为:.故答案为:.15、【解析】先求出正方形的面积,然后求出动点到点的距离所表示的平面区域的面积,最后根据几何概型计算公式求出概率.【详解】正方形的面积为,如下图所示:阴影部分的面积为:,在正方形内,阴影外面部分的面积为,则在该正方形区域内随机取一个点,则此点到点的距离大于的概率是.【点睛】本题考查了几何概型的计算公式,正确求出阴影部分的面积是解题的关键.16、【解析】构造函数,结合题意求得,由此判断出在上递增,由此求解出不等式的解集.【详解】令,,故函数在上单调递增,不等式可化为,则,解得:【点睛】本小题主要考查构造函数法解不等式,考查化归与转化的数学思想方法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】(1)利用列举法列出试验的样本空间,(2)由(1)可知共有16种情况,其中和为5的有4种,然后利用古典概型的概率公式求解即可【小问1详解】由题意可知试验的样本空间为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)【小问2详解】由(1)可知共有16种等可能情况,其中满足的有:(1,4),(2,3),(3,2),(4,1),4种,所以“”的概率为18、(1);(2).【解析】(1)先通过降幂公式和辅助角公式将函数化简,进而求出周期;(2)求出的范围,进而结合三角函数的性质求得答案.【小问1详解】,函数最小正周期为.【小问2详解】当时,,,∴,即函数的值域为.19、(1);(2)存在,.【解析】(1)由题设可知求出,再结合,从而可求出椭圆的方程,(2)①若直线与轴垂直,由对称性可知,代入椭圆方程可求得结果,②若直线不与轴垂直,设直线的方程为,将直线方程与椭圆方程联立方程组,消去,然后利用根与系数的关系,设,,再由条件,得,从而得,再利用点到直线的距离公式可求得结果【详解】(1)由题设可知解得,,,所以椭圆的方程为:;(2)设,,①若直线与轴垂直,由对称性可知,将点代入椭圆方程,解得,原点到该直线的距离;②若直线不与轴垂直,设直线的方程为,由消去得,则由条件,即,由韦达定理得,整理得,则原点到该直线的距离;故存在定点,使得到直线的距离为定值.20、(1)答案见解析,.(2).【解析】(1)若选①:求得双曲线得双曲线的焦点得出椭圆的,再由,可求得椭圆的标准方程;若选②:根据已知条件和椭圆的离心率可求得,从而得椭圆的标准方程;若选③:由已知建立方程,求解可求得,从而得椭圆的标准方程.(2)设直线的斜率为k,所求的直线方程为,代入椭圆的方程并整理得,设直线与椭圆的交点为,由根与系数的关系和中点坐标公式可求得答案.【小问1详解】解:若选①:由双曲线得双曲线的焦点和,因为椭圆与双曲线有相同的焦点,所以椭圆的,又,所以,所以,所以椭圆的标准方程为;若选②:因为,所以,又离心率,所以,即,解得,所以椭圆的标准方程为;若选③:因为,所以,即,又,解得,,所以椭圆的标准方程为;【小问2详解】解:由题意得直线的斜率必存在,设直线的斜率为k,所求的直线方程为,代入椭圆的方程并整理得,设直线与椭圆的交点为,则,因为点为AB中点,所以,解得,所以所求的直线方程为,即.21、(1)(2)【解析】(1)由正弦定理边化角,可求得角的正弦,由同角关系结合条件可得答案.(2)由(1),由余弦定理,求出边的长,进一步求得面积【小问1详解】因为,由正弦定理得因,所以.因为角为钝角,所以角为锐角,所以【小问2详解】由(1),由余弦定理,得,所以,解得或,不合题意舍去,故的面积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论