安徽省宿州市十三所省重点中学2026届高一数学第一学期期末质量检测模拟试题含解析_第1页
安徽省宿州市十三所省重点中学2026届高一数学第一学期期末质量检测模拟试题含解析_第2页
安徽省宿州市十三所省重点中学2026届高一数学第一学期期末质量检测模拟试题含解析_第3页
安徽省宿州市十三所省重点中学2026届高一数学第一学期期末质量检测模拟试题含解析_第4页
安徽省宿州市十三所省重点中学2026届高一数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省宿州市十三所省重点中学2026届高一数学第一学期期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,方程在有两个解,记,则下列说法正确的是()A.函数的值域是B.若,的增区间为和C.若,则D.函数的最大值为2.已知全集,集合,则A. B.C. D.3.已知命题,,则命题否定为()A., B.,C., D.,4.对于每个实数x,设取两个函数中的较小值.若动直线y=m与函数的图象有三个不同的交点,它们的横坐标分别为,则的取值范围是()A. B.C. D.5.要得到的图像,只需将函数的图像()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位6.已知直线及三个互不重合的平面,,,下列结论错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,,则7.已知函数f(x)是偶函数,且f(x)在上是增函数,若,则不等式的解集为()A.{x|x>2} B.C.{或x>2} D.{或x>2}8.已知某扇形的面积为,圆心角为,则该扇形的半径为()A.3 B.C.9 D.9.已知函数,则函数在上单调递增,是恒成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件10.将红、黑、蓝、白5张纸牌(其中白纸牌有2张)随机分发给甲、乙、丙、丁4个人,每人至少分得1张,则下列两个事件为互斥事件的是A.事件“甲分得1张白牌”与事件“乙分得1张红牌”B.事件“甲分得1张红牌”与事件“乙分得1张蓝牌”C.事件“甲分得1张白牌”与事件“乙分得2张白牌”D.事件“甲分得2张白牌”与事件“乙分得1张黑牌”二、填空题:本大题共6小题,每小题5分,共30分。11.若关于x的不等式对一切实数x恒成立,则实数k的取值范围是___________.12.已知,且,则______13.直线与直线的距离是__________14.已知函数,则______15.函数的零点个数是________.16.将函数图象上的所有点向右平行移动个单位长度,则所得图象的函数解析式为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数的图象与轴、轴共有三个交点.(1)求经过这三个交点的圆的标准方程;(2)当直线与圆相切时,求实数的值;(3)若直线与圆交于两点,且,求此时实数的值.18.已知集合.(1)当时,求;(2)当时,求实数的取值范围.19.已知向量,1若

,共线,求x的值;2若,求x的值;3当时,求与夹角的余弦值20.如图所示,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=a,(1)求证:PD⊥平面ABCD;(2)求证:平面PAC⊥平面PBD;(3)求二面角P-AC-D的正切值21.某校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格(1)求出第4组的频率,并补全频率分布直方图;(2)根据样本频率分布直方图估计样本的中位数与平均数;(3)如果用分层抽样的方法从“优秀”和“良好”的学生中共选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用函数的单调性判断AB选项;解方程求出从而判断C选项;举反例判断D选项.【详解】对于A选项,当时,,,为偶函数,当时,,任取,且,,若,则;若,则,即函数在区间上单调递减,在区间上单调递增,图像如图示:结合偶函数的性质可知,的值域是,故A选项错误;对于B选项,,当时,,,则为偶函数,当时,,易知函数在区间上单调递减,当时,,易知函数在区间上单调递增,图像如图示:根据偶函数的性质可知,函数的增区间为和,故B选项正确;对于C选项,若,图像如图示:若,则,与方程在有两个解矛盾,故C选项错误;对于D选项,若时,,图像如图所示:当时,则与方程在有两个解矛盾,进而函数的最大值为4错误,故D选项错误;故选:B2、C【解析】由集合,根据补集和并集定义即可求解.【详解】因为,即集合由补集的运算可知根据并集定义可得故选:C【点睛】本题考查了补集和并集的简单运算,属于基础题.3、D【解析】根据全称命题的否定是特称命题形式,直接选出答案.【详解】命题,,是全称命题,故其否定命题为:,,故选:D.4、C【解析】如图,作出函数的图象,其中,设与动直线的交点的横坐标为,∵图像关于对称∴∵∴∴故选C点睛:本题首先考查新定义问题,首先从新定义理解函数,为此解方程,确定分界点,从而得函数的具体表达式,画出函数图象,通过图象确定三个数中具有对称关系,,因此只要确定的范围就能得到的范围.5、A【解析】化简函数,即可判断.【详解】,需将函数的图象向左平移个单位.故选:A.6、B【解析】对A,可根据面面平行的性质判断;对B,平面与不一定垂直,可能相交或平行;对C,可根据面面平行的性质判断;对D,可通过在平面,中作直线,推理判断.【详解】解:对于选项A:根据面面平行的性质可知,若,,则成立,故选项A正确,对于选项B:垂直于同一平面的两个平面,不一定垂直,可能相交或平行,故选项B错误,对于选项C:根据面面平行的性质可知,若,,则成立,故选项C正确,对于选项D:若,,,设,,在平面中作一条直线,则,在平面中作一条直线,则,,,又,,,故选项D正确,故选:B.7、C【解析】利用函数的奇偶性和单调性将不等式等价为,进而可求得结果.详解】依题意,不等式,又在上是增函数,所以,即或,解得或.故选:C.8、A【解析】根据扇形面积公式求出半径.【详解】扇形的面积,解得:故选:A9、A【解析】根据充分、必要条件的定义证明即可.【详解】因为函数在上单调递增,则,恒成立,即恒成立,,即.所以“”是“”的充分不必要条件.故选:A.10、C【解析】对于,事件“甲分得1张白牌”与事件“乙分得1张红牌”可以同时发生,不是互斥事件;对于事件“甲分得1张红牌”与事件“乙分得1张蓝牌”可能同时发生,不是互斥事件;对于,事件“甲分得2张白牌”与事件“乙分得1张黑牌”能同时发生,不是互斥事件;但中的两个事件不可能发生,是互斥事件,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据一元二次不等式与二次函数的关系,可知只需判别式,利用所得不等式求得结果.【详解】不等式对一切实数x恒成立,,解得:故答案为:.12、##【解析】由,应用诱导公式,结合已知角的范围及正弦值求,即可得解.【详解】由题设,,又,即,且,所以,故.故答案为:13、【解析】14、【解析】由分段函数解析式先求,再求.【详解】由已知可得,故.故答案为:2.15、3【解析】令f(x)=0求解即可.【详解】,方程有三个解,故f(x)有三个零点.故答案为:3.16、【解析】由题意利用函数的图象变换规律,即可得到结果【详解】将函数的图象向右平移个单位,所得图象对应的函数解析式,即.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或;(3)【解析】(1)先求出二次函数的图象与坐标轴的三个交点的坐标,然后根据待定系数法求解可得圆的标准方程;(2)根据圆心到直线的距离等于半径可得实数的值;(3)结合弦长公式可得所求实数的值【详解】(1)在中,令,可得;令,可得或所以三个交点分别为,,,设圆的方程为,将三个点的坐标代入上式得,解得,所以圆的方程为,化为标准方程为:(2)由(1)知圆心,因为直线与圆相切,所以,解得或,所以实数的值为或(3)由题意得圆心到直线的距离,又,所以,则,解得所以实数的值为或【点睛】(1)求圆的方程时常用的方法有两种:一是几何法,即求出圆的圆心和半径即可得到圆的方程;二是用待定系数法,即通过代数法求出圆的方程(2)解决圆的有关问题时,要注意圆的几何性质的应用,合理利用圆的有关性质进行求解,可以简化运算、提高解题的效率18、(1)(2)【解析】(1)先求解集合,再根据交集运算求解结果(2)讨论当时,,当时,列出不等式组,能求出实数的取值范围【小问1详解】已知集合.当时,,【小问2详解】当即时,,符合题意;当时,要满足条件,则有,解得,综上所述,实数的取值范围19、(1);(2);(3)【解析】(1)根据题意,由向量平行的坐标公式可得,解可得的值,即可得答案;(2)若,则有,利用数量积的坐标运算列方程,解得的值即可;(3)根据题意,由的值可得的坐标,由向量的坐标计算公式可得和的值,结合,计算可得答案【详解】根据题意,向量,,若,则有,解可得若,则有,又由向量,,则有,即,解可得.根据题意,若,则有,,【点睛】本题主要考查两个向量共线、垂直的性质,两个向量坐标形式的运算,两个向量夹角公式的应用,属于中档题20、(1)见解析(2)见解析(3)【解析】(1)证明:∵PD=a,DC=a,PC=a,∴PC2=PD2+DC2,∴PD⊥DC.同理,PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD(2)证明:由(1)知PD⊥平面ABCD,∴PD⊥AC,又四边形ABCD是正方形,∴AC⊥BD,又BD∩PD=D,∴AC⊥平面PDB.又AC⊂平面PAC,∴平面PAC⊥平面PBD(3)设AC∩BD=O,连接PO.由PA=PC,知PO⊥AC.又DO⊥AC,故∠POD为二面角P-AC-D的平面角.易知OD=.在Rt△PDO中,tan∠POD=.考点:平面与平面垂直的判定.21、(1)第4组的频率为0.2,作图见解析(2)样本中位数的估计值为,平均数为87.25(3)0.9【解析】(1)利用频率和为1,计算可得答案,计算可得第四个矩形的高度为0.2÷5=0.04,由此作图即可;(2)设样本的中位数为x,由5×0.01+5×0.07+(x﹣85)×0.06=0.5解出即可得到中位数,根据77.5×0.05+82.5×0.35+87.5×0.30+92.5×0.20+97.5×0.10计算即可得到平均数;(3)通过列举法可得所有基本事件的总数以及至少有一人是“优秀”的总数,再利用古典概型概率公式计算可得.【详解】(1)其它组的频率为(0.01+0.07+0.06+0.02)×5=0.8,所以第4组的频率为0.2,频率分布图如图:(2)设样本的中位数为x,则5×0.01+5×0.07+(x﹣85)×0.06=0.5,解得x,∴样本中位数的估计值为,平均数为77.5×0.05+82.5×0.35+87.5×0.30+92.5×0.20+97.5×0.10=87.25;(3)依题意良好的人数为40×0.4=16人,优秀的人数为40×0.6=24人优秀与良好的人数比为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论