系统辨识理论及MATLAB仿真(第2版) 课件 6.2 BP网络辨识_第1页
系统辨识理论及MATLAB仿真(第2版) 课件 6.2 BP网络辨识_第2页
系统辨识理论及MATLAB仿真(第2版) 课件 6.2 BP网络辨识_第3页
系统辨识理论及MATLAB仿真(第2版) 课件 6.2 BP网络辨识_第4页
系统辨识理论及MATLAB仿真(第2版) 课件 6.2 BP网络辨识_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

神经网络辨识及其应用目录CONTENTS神经网络理论基础01BP网络辨识02BP网络的逼近03基于数据的BP网络离线建模04基于模型的BP神经网络离线建模05RBF网络的逼近06基于未知项在线建模的RBF网络自校正控制07Hopfield网络辨识08RBF网络辨识应用-自适应神经网络控制0902BP网络辨识1986年,Rumelhart等提出了误差反向传播神经网络,简称BP网络(BackPropagation),该网络是一种单向传播的多层前向网络。误差反向传播的BP算法简称BP算法,其基本思想是最小二乘法。它采用梯度搜索技术,使网络的实际输出值与期望输出值的误差均方值为最小。二、BP网络辨识BP神经网络BP网络具有以下几个特点:二、BP网络辨识BP神经网络(1)BP网络是一种多层网络,包括输入层、隐含层和输出层;(2)层与层之间采用全互连方式,同一层神经元之间不连接;(3)权值通过δ学习算法进行调节;(4)神经元激发函数为S函数;(5)学习算法由正向传播和反向传播组成;(6)层与层的连接是单向的,信息的传播是双向的。含一个隐含层的BP网络结构如图6-6所示,图中i为输入层神经元,j为隐层神经元,k为输出层神经元。二、BP网络辨识网络结构图6-6BP神经网络结构BP网络的优点为:二、BP网络辨识BP网络的优缺点(1)只要有足够多的隐层和隐层节点,BP网络可以逼近任意的非线性映射关系;(2)BP网络的学习算法属于全局逼近算法,具有较强的泛化能力。(3)BP网络输入输出之间的关联信息分布地存储在网络的连接权中,个别神经元的损坏只对输入输出关系有较小的影响,因而BP网络具有较好的容错性。BP网络的主要缺点为:二、BP网络辨识BP网络的优缺点(1)待寻优的参数多,收敛速度慢;(2)目标函数存在多个极值点,按梯度下降法进行学习,很容易陷入局部极小值;(3)难以确定隐层及隐层节点的数目。目前,如何根据特定的问题来确定具体的网络结构尚无很好的方法,仍需根据经验来试凑。由于BP网络具有很好的逼近非线性映射的能力,该网络在模式识别、图像处理、系统辨识、函数拟合、优化计算、最优预测和自适应控制等领域有着较为广泛的应用。由于BP网络具有很好的逼近特性和泛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论