甘肃省酒泉市2026届高二数学第一学期期末综合测试模拟试题含解析_第1页
甘肃省酒泉市2026届高二数学第一学期期末综合测试模拟试题含解析_第2页
甘肃省酒泉市2026届高二数学第一学期期末综合测试模拟试题含解析_第3页
甘肃省酒泉市2026届高二数学第一学期期末综合测试模拟试题含解析_第4页
甘肃省酒泉市2026届高二数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省酒泉市2026届高二数学第一学期期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的定义域为,若,则()A. B.C. D.2.已知直线l与抛物线交于不同的两点A,B,O为坐标原点,若直线的斜率之积为,则直线l恒过定点()A. B.C. D.3.已知双曲线,则双曲线的离心率为()A. B.C. D.4.平行直线:与:之间的距离等于()A. B.C. D.5.把直线绕原点逆时针转动,使它与圆相切,则直线转动的最小正角度A. B.C. D.6.以椭圆+=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是()A. B.C. D.7.为了了解某地区的名学生的数学成绩,打算从中抽取一个容量为的样本,现用系统抽样的方法,需从总体中剔除个个体,在整个过程中,每个个体被剔除的概率和每个个体被抽取的概率分别为()A. B.C. D.8.定义域为的函数满足,且的导函数,则满足的的集合为A. B.C. D.9.已知函数(其中)的部分图像如图所示,则函数的解析式为()A. B.C. D.10.设,分别为具有公共焦点与椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为A. B.1C.2 D.不确定11.如图,过抛物线的焦点的直线交抛物线于点,,交其准线于点,准线与对称轴交于点,若,且,则此抛物线的方程为()A. B.C. D.12.已知,则条件“”是条件“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件.二、填空题:本题共4小题,每小题5分,共20分。13.“直线和直线垂直”的充要条件是______14.已知函数有零点,则的取值范围是___________.15.已知函数在处有极值.则=________16.某班学号的学生铅球测试成绩如下表:学号12345678成绩9.17.98.46.95.27.18.08.1可以估计这8名学生铅球测试成绩的第25百分位数为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)动点与定点的距离和它到定直线的距离的比是,记动点M的轨迹为曲线C.(1)求曲线C的方程;(2)已知过点的直线与曲线C相交于两点,,请问点P能否为线段的中点,并说明理由.18.(12分)某学校一航模小组进行飞机模型飞行高度实验,飞机模型在第一分钟时间内上升了米高度.若通过动力控制系统,可使飞机模型在以后的每一分钟上升的高度都是它在前一分钟上升高度的(1)在此动力控制系统下,该飞机模型在第三分钟内上升的高度是多少米?(2)这个飞机模型上升的最大高度能超过米吗?如果能,求出从第几分钟开始高度超过米;如果不能,请说明理由19.(12分)已知函数(1)当时,求的单调性;(2)若存在两个极值点,试证明:20.(12分)等差数列的前项和记为,已知.(1)求的通项公式:(2)求,并求为何值时的值最大.21.(12分)在2016珠海航展志愿服务开始前,团珠海市委调查了北京师范大学珠海分校某班50名志愿者参加志愿服务礼仪培训和赛会应急救援培训的情况,数据如下表:单位:人参加志愿服务礼仪培训未参加志愿服务礼仪培训参加赛会应急救援培训88未参加赛会应急救援培训430(1)从该班随机选1名同学,求该同学至少参加上述一个培训的概率;(2)在既参加志愿服务礼仪培训又参加赛会应急救援培训的8名同学中,有5名男同学A,A,A,A,A名女同学B,B,B现从这5名男同学和3名女同学中各随机选1人,求A被选中且B未被选中的概率.22.(10分)已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴的正半轴上,是否存在某个确定的点M,过该点的动直线与抛物线C交于A,B两点,使得为定值.如果存在,求出点M的坐标;如果不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用导数的定义可求得的值.【详解】由导数的定义可得.故选:D.2、A【解析】设出直线方程,联立抛物线方程,得到,进而得到的值,将直线的斜率之积为,用A,B点坐标表示出来,结合的值即可求得答案.【详解】设直线方程为,联立,整理得:,需满足,即,则,由,得:,所以,即,故,所以直线l为:,当时,,即直线l恒过定点,故选:A.3、D【解析】由双曲线的方程及双曲线的离心率即可求解.【详解】解:因为双曲线,所以,所以双曲线的离心率,故选:D.4、B【解析】先由两条直线平行解出,再按照平行线之间距离公式求解.【详解】,则:,即,距离为.故选:B.5、B【解析】根据直线过原点且与圆相切,求出直线的斜率,再数形结合计算最小旋转角【详解】解析:由题意,设切线为,∴.∴或.∴时转动最小∴最小正角为.故选B.【点睛】本题考查直线与圆的位置关系,属于基础题6、B【解析】根据椭圆的几何性质求椭圆的焦点坐标和长轴端点坐标,由此可得双曲线的a,b,c,再求双曲线的标准方程.【详解】∵椭圆的方程为+=1,∴椭圆的长轴端点坐标为,,焦点坐标为,,∴双曲线的焦点在y轴上,且a=1,c=2,∴b2=3,∴双曲线方程为,故选:B.7、D【解析】根据每个个体被抽取的概率都是相等的、被剔除的概率也都是相等的,分别由剔除的个数和抽取的样本容量除以总体个数即可求解.【详解】根据系统抽样的定义和方法可知:每个个体被抽取的概率都是相等的,每个个体被剔除的概率也都是相等的,所以每个个体被剔除的概率为,每个个体被抽取的概率为,故选:D.8、B【解析】利用2f(x)<x+1构造函数g(x)=2f(x)-x-1,进而可得g′(x)=2f′(x)-1>0.得出g(x)的单调性结合g(1)=0即可解出【详解】令g(x)=2f(x)-x-1.因为f′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)单调增函数因为f(1)=1,所以g(1)=2f(1)-1-1=0.所以当x<1时,g(x)<0,即2f(x)<x+1.故选B.【点睛】本题主要考察导数的运算以及构造函数利用其单调性解不等式.属于中档题9、B【解析】根据题图有且,结合五点法求参数,即可得的解析式.【详解】由图知:且,则,所以,则,即,又,可得,,则,,又,即有.综上,.故选:B10、C【解析】根据题意,设它们共同的焦距为2c、椭圆的长轴长2a、双曲线的实轴长为2m,由椭圆和双曲线的定义及勾弦定理建立关于a、c、m的方程,联解可得a2+m2=2c2,再根据离心率的定义求解【详解】由题意设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,设P在双曲线的右支上,由双曲线的定义得|PF1|﹣|PF2|=2m①由椭圆的定义|PF1|+|PF2|=2a②又∵,∴,可得∠F1PF2=900,故|PF1|2+|PF2|2=4c2③,①平方+②平方,得|PF1|2+|PF2|2=2a2+2m2④将④代入③,化简得a2+m2=2c2,即,可得,所以=.故选:C11、B【解析】根据抛物线定义,结合三角形相似以及已知条件,求得,则问题得解.【详解】根据题意,过作垂直于准线,垂足为,过作垂直于准线,垂足为,如下所示:因为,又//,,则,故可得,又△△,则,即,解得,故抛物线方程为:.故选:.12、A【解析】若命题,则p是q的充分不必要条件,q是p的必要不充分条件【详解】因为,所以,所以.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】利用直线一般式方程表示垂直的方法求解.【详解】因为直线和直线垂直,所以,解得或;故答案为:或.14、【解析】利用导数可求得函数的最小值,要使函数有零点,只要,求得函数的最小值,即可得解.【详解】解:,当时,,当时,,所以在上递减,在上递增,所以,因为函数有零点,所以,解得.故答案为:.15、4【解析】根据极值点概念求解【详解】,由题意得,,经检验满足题意故答案为:416、【解析】利用百分位数的计算方法即可求解.【详解】将以上数据从小到大排列为,,,,,,,;%,则第25百分位数第项和第项的平均数,即为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)不能,理由见解析.【解析】(1)利用题中距离之比列出关于动点的方程即可求解;(2)先假设点P能为线段的中点,再利用点差法求出直线的斜率,最后联立直线与曲线进行检验即可.【小问1详解】解:动点与定点的距离和它到定直线的距离的比是则等式两边平方可得:化简得曲线C的方程为:【小问2详解】解:点不能为线段的中点,理由如下:由(1)知,曲线C的方程为:过点的直线斜率为,,因为过点的直线与曲线C相交于两点,所以,两式作差并化简得:①当为的中点时,则,②将②代入①可得:此时过点的直线方程为:将直线方程与曲线C方程联立得:,,无解与过点的直线与曲线C相交于两点矛盾所以点不能为线段的中点【点睛】方法点睛:当圆锥曲线中涉及中点和斜率的问题时,常用点差法进行求解.18、(1);(2)不能,理由见解析.【解析】(1)由题得每分钟上升的高度构成等比数列,再利用等比数列的通项求解;(2)求出即得解.【小问1详解】解:由题意,飞机模型每分钟上升的高度构成,公比的等比数列,则米.即飞机模型在第三分钟内上升的高度是米.【小问2详解】解:不能超过米.依题意可得,所以这个飞机模型上升的最大高度不能超过米.19、(1)答案见解析(2)证明见解析【解析】(1)依据导函数判定函数的单调性即可;(2)等价转化和构造新函数在不等式证明中可以起到关键性作用.【小问1详解】的定义域为,当时,令得,当时,;当时,所以在和上单调递减,在上单调递增.【小问2详解】,存在两个极值点,则有二正根,由,得由于的两个极值点满足,所以,不妨设,则由于,所以等价于设函数,在单调递减,又,从而所以,故.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理20、(1);(2)当或时,的值最大.【解析】(1)根据等差数列前项和公式,结合等差数列的通项公式进行求解即可;(2)根据等差数列的性质进行求解即可.【小问1详解】设等差数列的公差为,因为,所以有,即;【小问2详解】由(1)可知,所以该数列是递减数列,而,当时,解得:,因此当或时,的值最大.21、(1);(2).【解析】(1)根据表中数据知未参加志愿服务礼仪培训又未参加赛会应急救援培训的有30人,故至少参加上述一个培训的共有人.从而求得概率;(2)从这5名男同学和3名女同学中各随机选1人,列出其一切可能的结果,从而求得被选中且未被选中的概率.【详解】解:由调查数据可知,既未参加志愿服务礼仪培训又未参加赛会应急救援培训的有30人,故至少参加上述一个培训的共有人.从该班随机选1名同学,该同学至少参加上述一个培训的概率为;从这5名男同学和3名女同学中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论