浙江省名校协作体2026届高二上数学期末监测模拟试题含解析_第1页
浙江省名校协作体2026届高二上数学期末监测模拟试题含解析_第2页
浙江省名校协作体2026届高二上数学期末监测模拟试题含解析_第3页
浙江省名校协作体2026届高二上数学期末监测模拟试题含解析_第4页
浙江省名校协作体2026届高二上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省名校协作体2026届高二上数学期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆的圆心在轴上,半径为2,且与直线相切,则圆的方程为A. B.或C. D.或2.参加抗疫的300名医务人员,编号为1,2,…,300.为了解这300名医务人员的年龄情况,现用系统抽样的方法从中抽取15名医务人员的年龄进行调查.若抽到的第一个编号为6,则抽到的第二个编号为()A.21 B.26C.31 D.363.空间直角坐标系中、、)、,其中,,,,已知平面平面,则平面与平面间的距离为()A. B.C. D.4.不等式的解集为()A. B.C.或 D.或5.过双曲线Ω:(a>0,b>0)右焦点F作x轴的垂线,与Ω在第一象限的交点为M,且直线AM的斜率大于2,其中A为Ω的左顶点,则Ω的离心率的取值范围为()A.(1,3) B.(3,+∞)C.(1,) D.(,+∞)6.抛物线上的一点到其焦点的距离等于()A. B.C. D.7.设函数是定义在上的函数的导函数,有,若,,则,,的大小关系是()A. B.C. D.8.经过点的直线的倾斜角为,则A. B.C. D.9.已知数列的首项为,且,若,则的取值范围是()A. B.C. D.10.在等差数列中,为其前n项和,,则()A.55 B.65C.15 D.6011.变量,满足约束条件则的最小值为()A. B.C. D.512.已知点为直线上任意一点,为坐标原点.则以为直径的圆除过定点外还过定点()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,是双曲线的两个焦点,以线段为边作正,若边的中点在双曲线上,则双曲线的离心率____________.14.已知茎叶图记录了甲、乙两组各名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为,乙组数据的平均数为,则的值为__________.甲组乙组15.已知抛物线的准线方程为,则________16.已知抛物线上一点到准线的距离为,到直线:的距离为,则的最小值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,,,为边上一点,且(1)求;(2)若,求18.(12分)已知的内角A,B,C所对的边分别为a,b,c,且(1)求B;(2)若,求的面积的最大值19.(12分)已知圆O:与圆C:(1)在①,②这两个条件中任选一个,填在下面的横线上,并解答若______,判断这两个圆位置关系;(2)若,求直线被圆C截得的弦长注:若第(1)问选择两个条件分别作答,按第一个作答计分20.(12分)已知等差数列中,,.(1)求的通项公式;(2)若,求数列的前n项和.21.(12分)已知曲线在处的切线方程为,且.(1)求的解析式;(2)若时,不等式恒成立,求实数的取值范围.22.(10分)已知函数.(Ⅰ)求的单调递减区间;(Ⅱ)若当时,恒成立,求实数a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设圆心坐标,由点到直线距离公式可得或,进而求得答案【详解】设圆心坐标,因为圆与直线相切,所以由点到直线的距离公式可得,解得或.因此圆的方程为或.【点睛】本题考查利用直线与圆的位置关系求圆的方程,属于一般题2、B【解析】将300个数编号:001,002,003,,3000,再平均分为15个小组,然后按系统抽样方法得解.【详解】将300个数编号:001,002,003,,3000,再平均分为15个小组,则第一编号为006,第二个编号为.故选:B.3、A【解析】由已知得,,,设向量与向量、都垂直,由向量垂直的坐标运算可求得,再由平面平行和距离公式计算可得选项.【详解】解:由已知得,,,设向量与向量、都垂直,则,即,取,,又平面平面,则平面与平面间的距离为,故选:A.4、A【解析】先将分式不等式转化为一元二次不等式,然后求解即可【详解】由,得,解得,所以原不等式的解集为,故选:A5、B【解析】求点A和M的坐标,进而表示斜率,可得,整理得b2>2ac+2a2,从而可解得离心率的范围.【详解】F(c,0),设M(c,yM),(yM>0)代入可解得yM=,A(-a,0),由于kAM>2,即,整理得b2>2ac+2a2,又b2=c2-a2,∴c2-a2>2ac+2a2,即c2-2ac-3a2>0,∴e2-2e-3>0,e<-1(舍)或e>3.答案:B【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.6、C【解析】由点的坐标求得参数,再由焦半径公式得结论【详解】由题意,解得,所以,故选:C7、C【解析】设,求导分析的单调性,又,,,即可得出答案【详解】解:设,则,又因为,所以,所以在上单调递增,又,,,因为,所以,所以.故选:C8、A【解析】由题意,得,解得;故选A考点:直线的倾斜角与斜率9、C【解析】由题意,得到,利用叠加法求得,结合由,转化为恒成立,分,和三种情况讨论,即可求解.【详解】因为,可得,所以,所以,各式相加可得,所以,由,可得恒成立,整理得恒成立,当时,,不等式可化为恒成立,所以;当时,,不等式可化为恒成立;当时,,不等式可化为恒成立,所以,综上可得,实数的取值范围是.故选:C.10、B【解析】根据等差数列求和公式结合等差数列的性质即可求得.【详解】解析:因为为等差数列,所以,即,.故选:B11、A【解析】根据不等式组,作出可行域,数形结合即可求z的最小值.【详解】根据不等式组作出可行域如图,,则直线过A(-1,0)时,z取最小值.故选:A.12、D【解析】设垂直于直线,可知圆恒过垂足;两条直线方程联立可求得点坐标.【详解】设垂直于直线,垂足为,则直线方程为:,由圆的性质可知:以为直径的圆恒过点,由得:,以为直径的圆恒过定点.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】根据线段为边作正,得到M在y轴上,求得M的坐标,再由,得到边的中点坐标,代入双曲线方程求解.【详解】以线段为边作正,则M在y轴上,设,则,因为,所以边的中点坐标为,因为边的中点在双曲线上,所以,因为,所以,即,解得,因为,所以,故答案为:14、【解析】根据中位数、平均数的定义,结合茎叶图进行计算求解即可.【详解】根据茎叶图可知:甲组名学生在一次英语听力测试中的成绩分别;乙组名学生在一次英语听力测试中的成绩分别,因为甲组数据的中位数为,所以有,又因为乙组数据的平均数为,所以有,所以,故答案为:15、【解析】由准线方程的表达式构建方程,求得答案.【详解】因为准线方程为,所以故答案为:4【点睛】本题考查抛物线中准线的方程表示,属于基础题.16、3【解析】根据抛物线的定义可知,点P到抛物线准线的距离等于点P到焦点F的距离,过焦点F作直线:的垂线,此时取得最小值,利用点到直线的距离公式,即可求解.【详解】由题意,抛物线的焦点坐标为,准线方程为,如图所示,根据抛物线的定义可知,点P到抛物线准线的距离等于点P到焦点F的距离,过焦点F作直线:的垂线,此时取得最小值,由点到直线的距离公式可得,即的最小值为3.【点睛】本题主要考查了抛物线的标准方程及其简单的几何性质的应用,以及抛物线的最值问题,其中解答中根据抛物线的定义可知,点P到抛物线准线的距离等于点P到焦点F的距离,利用点到直线的距离公式求解是解答的关键,着重考查了转化思想,以及运算与求解能力,属于中档试题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)在△中,由余弦定理,即可求.(2)在中,由正弦定理,即可求.【详解】(1)在△中,,,,由余弦定理得:,∴(2)在中,,,,由正弦定理得:,即,∴18、(1)(2)【解析】(1):根据正弦定理由边化角和三角正弦和公式即可求解;(2):根据余弦定理和均值不等式求得最大值,利用面积公式即可求解【小问1详解】由正弦定理及,得,∵,∵,∴【小问2详解】由余弦定理,∴,∴,当且仅当时等号成立,∴的面积的最大值为19、(1)选①:外离;选②:相切;(2)【解析】(1)不论选①还是选②,都要首先算出两圆的圆心距,然后和两圆的半径之和或差进行比较即可;(2)根据点到直线的距离公式,先计算圆心到直线的距离,然后利用圆心距、半径、弦长的一半之间的关系求解.【小问1详解】选①圆O的圆心为,半径为l;圆C圆心为,半径为因为两圆的圆心距为,且两圆的半径之和为,所以两圆外离选②圆O的圆心为,半径为1.圆C的圆心为,半径为2因为两圆的圆心距为.且两圆的半径之和为,所以两圆外切【小问2详解】因为点C到直线的距离,所以直线被圆C截得的弦长为20、(1);(2).【解析】(1)先设等差数列的公差为,由题中条件,列出方程求出首项和公差,即可得出通项公式;(2)根据(1)的结果,得到,再由等比数列的求和公式,即可得出结果.【详解】(1)设等差数列的公差为,因为,,所以,解得,所以;(2)由(1)可得,,即数列为等比数列,所以数列的前n项和.21、(1);(2).【解析】(1)根据导数的几何意义得,结合对数的运算性质求出m,利用直线的点斜式方程即可得出切线方程;(2)由(1)将不等式变形为,利用导数研究函数在、、时的单调性,即可得出结果.【小问1详解】,∴,,,,,切线方程为,即,∴.【小问2详解】令,,,当时,,所以在上单调递增,所以,即符合题意;当时,设,①当,,,所以在上单调递增,,所以在上单调递增,所以,故符合题意;②当时,,,所以在上递增,在上递减,且,所以当时,,则在上单调递减,且,故,,舍去.综上:22、(Ⅰ)单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论