湖北宜昌市示范高中协作体2026届高一上数学期末学业水平测试模拟试题含解析_第1页
湖北宜昌市示范高中协作体2026届高一上数学期末学业水平测试模拟试题含解析_第2页
湖北宜昌市示范高中协作体2026届高一上数学期末学业水平测试模拟试题含解析_第3页
湖北宜昌市示范高中协作体2026届高一上数学期末学业水平测试模拟试题含解析_第4页
湖北宜昌市示范高中协作体2026届高一上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北宜昌市示范高中协作体2026届高一上数学期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,,,则()A. B.C. D.2.命题“∃x>0,x2=x﹣1”的否定是()A.∃x>0,x2≠x﹣1 B.∀x≤0,x2=x﹣1C.∃x≤0,x2=x﹣1 D.∀x>0,x2≠x﹣13.下列各角中,与终边相同的角为()A. B.160°C. D.360°4.将红、黑、蓝、白5张纸牌(其中白纸牌有2张)随机分发给甲、乙、丙、丁4个人,每人至少分得1张,则下列两个事件为互斥事件的是A.事件“甲分得1张白牌”与事件“乙分得1张红牌”B.事件“甲分得1张红牌”与事件“乙分得1张蓝牌”C.事件“甲分得1张白牌”与事件“乙分得2张白牌”D.事件“甲分得2张白牌”与事件“乙分得1张黑牌”5.如图,在平面四边形ABCD,,,,.若点E为边上的动点,则的取值范围为()A. B.C. D.6.“”是“为锐角”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既非充分又非必要条件7.已知,且,则A. B.C. D.8.定义在上的偶函数满足,且在上是减函数,若,是锐角三角形的两个内角,则下列各式一定成立的是()A. B.C. D.9.方程的解所在的区间是()A. B.C. D.10.已知.则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知是偶函数,则实数a的值为___________.12.设是以2为周期的奇函数,且,若,则的值等于___13.已知.若实数m满足,则m的取值范围是__14.函数的零点个数为___15.已知集合,,则集合中的元素个数为___________.16.定义为中的最大值,函数的最小值为,如果函数在上单调递减,则实数的范围为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求不等式的解集;(2)若有两个不同的实数根,求a的取值范围18.已知直线与相交于点,直线(1)若点在直线上,求的值;(2)若直线交直线,分别为点和点,且点的坐标为,求的外接圆的标准方程19.计算:20.已知函数.(1)当,为奇函数时,求b的值;(2)如果为R上的单调函数,请写出一组符合条件的a,b值;(3)若,,且的最小值为2,求的最小值.21.如图,在四棱锥中,底面为平行四边形,,.(1)求证:;(2)若为等边三角形,,平面平面,求四棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据交集、补集的定义计算可得;【详解】解:集合,,,则故选:D2、D【解析】根据特称命题的否定是全称命题的知识选出正确结论.【详解】因为特称命题的否定是全称命题,注意到要否定结论,所以:命题“∃x>0,x2=x﹣1”的否定是:∀x>0,x2≠x﹣1故选:D【点睛】本小题主要考查全称命题与特称命题,考查特称命题的否定,属于基础题.3、C【解析】由终边相同角的定义判断【详解】与终边相同角为,而时,,其它选项都不存在整数,使之成立故选:C4、C【解析】对于,事件“甲分得1张白牌”与事件“乙分得1张红牌”可以同时发生,不是互斥事件;对于事件“甲分得1张红牌”与事件“乙分得1张蓝牌”可能同时发生,不是互斥事件;对于,事件“甲分得2张白牌”与事件“乙分得1张黑牌”能同时发生,不是互斥事件;但中的两个事件不可能发生,是互斥事件,故选C.5、A【解析】由已知条件可得,设,则,由,展开后,利用二次函数性质求解即可.【详解】∵,因为,,,所以,连接,因为,所以≌,所以,所以,则,设,则,∴,,,,所以,因为,所以.故选:A6、B【解析】根据充分条件与必要条件的定义判断即可.【详解】解:因为为锐角,所以,所以,所以“”是“为锐角”的必要条件;反之,当时,,但是不是锐角,所以“”是“为锐角”的非充分条件.故“”是“为锐角”必要不充分条件.故选:B.【点睛】本题主要考查充分条件与必要条件,与角的余弦在各象限的正负,属于基础题.7、A【解析】由条件利用两角和的正切公式求得tanα的值,再利用同角三角函数的基本关系与二倍角公式,求得的值【详解】解:∵tan(α),则tanα,∵tanα,sin2α+cos2α=1,α∈(,0),可得sinα∴2sinα=2()故选A点睛】本题主要考查两角和的正切公式的应用,同角三角函数的基本关系,二倍角公式,考查计算能力,属于基础题8、A【解析】根据题意,先得到是周期为的函数,再由函数单调性和奇偶性,得出在区间上是增函数;根据三角形是锐角三角,得到,得出,从而可得出结果.【详解】因为偶函数满足,所以函数是周期为的函数,又在区间上是减函数,所以在区间上是减函数,因为偶函数关于轴对称,所以在区间上是增函数;又,是锐角三角形的两个内角,所以,即,因此,即,所以.故选:A.【点睛】本题主要考查由函数的基本性质比较大小,涉及正弦函数的单调性,属于中档题.9、B【解析】作差构造函数,利用零点存在定理进行求解.【详解】令,则,,因为,所以函数的零点所在的区间是,即方程的解所在的区间是.故选:B.10、A【解析】求解出成立的充要条件,再与分析比对即可得解.【详解】,,则或,由得,由得,显然,,所以“”是“”的充分不必要条件.故选:A【点睛】结论点睛:充分不必要条件的判断:p是q的充分不必要条件,则p对应集合是q对应集合的真子集.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据偶函数定义求解【详解】由题意恒成立,即,恒成立,所以故答案为:12、【解析】先利用求得的值,再依据题给条件用来表示,即可求得的值【详解】∵,∴,又∵是以2为周期的奇函数,∴故答案为:13、【解析】由题意可得,进而解不含参数的一元二次不等式即可求出结果.【详解】由题意可知,即,所以,因此,故答案:.14、2【解析】当x≤0时,令函数值为零解方程即可;当x>0时,根据零点存在性定理判断即可.【详解】当x≤0时,,∵,故此时零点为;当x>0时,在上单调递增,当x=1时,y<0,当x=2时,y>0,故在(1,2)之间有唯一零点;综上,函数y在R上共有2个零点.故答案为:2.15、【解析】解不等式确定集合,解方程确定集合,再由交集定义求得交集后可得结论【详解】由题意,,∴,只有1个元素故答案为:116、【解析】根据题意,将函数写成分段函数的形式,分析可得其最小值,即可得的值,进而可得,由减函数的定义可得,解得的范围,即可得答案【详解】根据题意,,则,根据单调性可得先减后增,所以当时,取得最小值2,则有,则,因为为减函数,必有,解可得:,即m的取值范围为;故答案为.【点睛】本题考查函数单调性、函数最值的计算,关键是求出c的值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用三角恒等变换公式将化到最简形式,确定,在这个范围内解三角不等式即可;(2)确定在上的最值,根据有两个不同的实数根,得到a应满足的条件,解得答案.【小问1详解】原式化简后得,由,则∴,可得,即,故不等式的解集为【小问2详解】在上的单调递增区间为,单调递减区间为,当时,,,当时,,,当时,,,又有两个不同的实数根,则,∴,故a的取值范围为18、(1);(2).【解析】(1)求出两直线的交点P坐标,代入方程可得;(2)把B坐标代入方程可得,由方程联立可解得A点坐标,可设圆的一般方程,代入三点坐标后可解得其中的参数,最后再配方可得标准方程试题解析:(1)又P在直线l3上,,(2)在l3上,,联立l3,l1得:设△PAB的外接圆方程为x2+y2+Dx+Ey+F=0把P(0,1),A(1,0),B(3,2)代入得:△PAB的外接圆方程为x2+y2x+2y=0,即(x)2+(y+1)2=5点睛:第(2)题中求圆的方程,可不设圆方程的一般式,用以下方法求解:由于l1⊥l2,所以PAPB△PAB的外接圆是以AB为直径的圆外接圆方程为:(x)(x)+y(y+1)=0整理后得:(x)2+(y+1)2=519、109【解析】化根式为分数指数幂,运用有理数指数幂的运算性质化简可求出值.【详解】原式=()6+1=22×33+2﹣1=108+2﹣1=109【点睛】本题考查根式的概念,将根式化为分数指数幂和其运算法则的应用,属于基础题.20、(1)(2),(答案不唯一,满足即可)(3)【解析】(1)当时,根据奇函数的定义,可得,化简整理,即可求出结果;(2)由函数和函数在上的单调递性,可知,即可满足题意,由此写出一组即可;(3)令,则,然后再根据基本不等式和已知条件,可得,再根据基本不等式即可求出结果.【小问1详解】解:当时,,因为是奇函数,所以,即,得,可得;【小问2详解】解:当,时,此时函数为增函数.(答案不唯一,满足即可)检验:当和时,,,均是上的单调递增函数,所以此时是上的单调递增函数,满足题意;【小问3详解】解:令,则,所以,即,当且仅当,即时等号成立,所以,由题意,,所以.由,当且仅当时等号成立,由解得,所以.21、(1)详见解析;(2)2【解析】(1)根据题意作于,连结,可证得,于是,故,然后根据线面垂直的判定得到平面,于是可得所证结论成立.(2)由(1)及平面平面可得平面,故为四棱锥的高.又由题意可证得四边形为有一个角为的边长为的菱形,求得四边形的面积后可得所求体积【详解】(1)作于,连结.∵,,是公共边,∴,∴∵,∴,又平面,平面,,∴平面,又平面,∴(另法:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论