版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届浙江省余姚市高一数学第一学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设向量=(1.)与=(-1,2)垂直,则等于A. B.C.0 D.-12.已知,,则的值约为(精确到)()A. B.C. D.3.关于的不等式的解集为,且,则()A.3 B.C.2 D.4.若函数在R上单调递减,则实数a的取值范围是()A. B.C. D.5.设,则A. B.C. D.6.设直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱AA1、CC1上,且PA=QC1,则四棱锥B-APQC的体积为()A. B.C. D.7.若方程在区间内有两个不同的解,则A. B.C. D.8.已知,,,则a,b,c三个数的大小关系是()A. B.C. D.9.已知函数:①;②;③;④;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是()A.②①③④ B.②③①④C.④①③② D.④③①②10.已知函数是定义域为的奇函数,且满足,当时,,则A.4 B.2C.-2 D.-4二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的周长为8,则扇形的面积的最大值为_________,此时扇形的圆心角的弧度数为________12.已知是半径为,圆角为扇形,是扇形弧上的动点,是扇形的接矩形,则的最大值为________.13.函数,在区间上增数,则实数t的取值范围是________.14.设且,函数,若,则的值为________15.写出一个能说明“若函数为奇函数,则”是假命题的函数:_________.16.已知一个扇形的面积为,半径为,则它的圆心角为______弧度三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知正三棱柱,是的中点求证:(1)平面;(2)平面平面18.已知,且函数是奇函数.(1)求实数a的值;(2)判断函数的单调性,并证明.19.已知函数(且)的图象恒过点A,且点A在函数的图象上.(1)求的最小值;(2)若,当时,求的值域.20.已知函数图象上的一个最高点的坐标为,此点到相邻最低点间的曲线与轴交于点(1)求函数的解析式;(2)用“五点法”画出(1)中函数在上的图象.21.已知函数(1)记,已知函数为奇函数,求实数b的值;(2)求证:函数是上的减函数
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】:正确的是C.点评:此题主要考察平面向量的数量积的概念、运算和性质,同时考察三角函数的求值运算.2、B【解析】利用对数的运算性质将化为和的形式,代入和的值即可得解.【详解】.故选:B3、A【解析】根据一元二次不等式与解集之间的关系可得、,结合计算即可.【详解】由不等式的解集为,得,不等式对应的一元二次方程为,方程的解为,由韦达定理,得,,因为,所以,即,整理,得.故选:A4、D【解析】要保证函数在R上单调递减,需使得和都为减函数,且x=1处函数值满足,由此解得答案.【详解】由函数在R上单调递减,可得,解得,故选:D.5、B【解析】函数在上单调递减,所以,函数在上单调递减,所以,所以,答案为B考点:比较大小6、C【解析】为直三棱柱,且,.故C正确考点:棱锥的体积7、C【解析】由,得,所以函数的图象在区间内的对称轴为故当方程在区间内有两个不同的解时,则有选C8、A【解析】利用指数函数的单调性比较的大小,再用作中间量可比较出结果.【详解】因为指数函数为递减函数,且,所以,所以,因为,,所以,综上所述:.故选:A9、D【解析】根据指数函数、幂函数的性质进行选择即可.【详解】①:函数是实数集上的增函数,且图象过点,因此从左到右第三个图象符合;②:函数是实数集上的减函数,且图象过点,因此从左到右第四个图象符合;③:函数在第一象限内是减函数,因此从左到右第二个图象符合;④:函数在第一象限内是增函数,因此从左到右第一个图象符合,故选:D10、B【解析】先利用周期性将转化为,再利用奇函数的性质将转化成,然后利用时的函数表达式即可求值.【详解】由可知,为周期函数,周期为,所以,又因为为奇函数,有,因为,所以,答案为B.【点睛】主要考查函数的周期性,奇偶性的应用,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、①.4②.2【解析】根据扇形的面积公式,结合配方法和弧长公式进行求解即可.【详解】设扇形所在圆周的半径为r,弧长为l,有,,此时,,故答案为:;12、【解析】设,用表示出的长度,进而用三角函数表示出,结合辅助角公式即可求得最大值.【详解】设扇形的半径为,是扇形的接矩形则,所以则所以因为,所以所以当时,取得最大值故答案为:【点睛】本题考查了三角函数的应用,将边长转化为三角函数式,结合辅助角公式求得最值是常用方法,属于中档题.13、【解析】作出函数的图象,数形结合可得结果.【详解】解:函数的图像如图.由图像可知要使函数是区间上的增函数,则.故答案为【点睛】本题考查函数的单调性,考查函数的图象的应用,考查数形结合思想,属于简单题目.14、【解析】根据函数的解析式以及已知条件可得出关于实数的等式,由此可解得实数的值.【详解】因为,且,则.故答案为:.15、(答案不唯一)【解析】由题意,只需找一个奇函数,0不在定义域中即可.【详解】由题意,为奇函数且,则满足题意故答案为:16、##【解析】利用扇形的面积公式列方程即可求解.【详解】设扇形的圆心角为,扇形的面积即,解得,所以扇形的圆心角为弧度,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】(1)连接,交于点,连结,由棱柱的性质可得点是的中点,根据三角形中位线定理可得,利用线面平行的判定定理可得平面;(2)由正棱柱的性质可得平面,于是,再由正三角形的性质可得,根据线面垂直的判定定理可得平面,从而根据面面垂直的判定定理可得结论.试题解析:(1)连接,交于点,连结,因为正三棱柱,所以侧面是平行四边形,故点是的中点,又因为是的中点,所以,又因为平面,平面,所以平面(2)因为正三棱柱,所以平面,又因为平面,所以,因为正三棱柱,是的中点,是的中点,所以,又因为,所以平面,又因为平面,所以平面平面【方法点晴】本题主要考查线面平行的判定定理、线面垂直及面面垂直的证明,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.18、(1)(2)在上是减函数,证明见解析【解析】(1)直接由解出,再把代入检验;(2)直接由定义判断单调性即可.【小问1详解】因为,函数奇函数,所以,解得.此时,,,满足题意.故.【小问2详解】在上是减函数.任取,,则,由∴,故在上是减函数.19、(1)4;(2).【解析】(1)根据对数函数恒过定点(1,0)求出m和n的关系:,则利用转化为基本不等式求最小值;(2)利用换元法令,将问题转化为二次函数求值域问题即可.【小问1详解】∵,∴函数的图象恒过点.∵在函数图象上,∴.∵,∴,,∴,,∴,当且仅当时等号成立,∴的最小值为4.【小问2详解】当时,,∵在上单调递增,∴当时,,令,则,,在上单调递增,∴当时,;当时,.故所求函数的值域为.20、(1);(2)图见解析【解析】(1)根据条件中所给函数的最高点的坐标,写出振幅,根据两个相邻点的坐标写出周期,把一个点的坐标代入求出初相,写出解析式;(2)利用五点法即可得到结论【详解】(1),,又,(2)00020-20本题主要考查三角函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国化妆品研发行业市场供需分析及防腐技术评估规划研究报告
- 2025-2030中国化妆品原料行业市场深度分析及发展趋势和潜力预测研究报告
- 2024年新乡长垣市东英学校招聘真题
- 2025年上海立信会计金融学院单招职业适应性考试题库附答案解析
- 2024年德阳农业科技职业学院单招职业适应性考试题库附答案解析
- 2023年湖南外贸职业学院单招职业倾向性测试题库附答案解析
- 2024年大理农林职业技术学院单招职业倾向性考试题库附答案解析
- 2023年茂名职业技术学院单招职业适应性测试模拟测试卷附答案解析
- 2024年重庆工贸职业技术学院单招职业技能考试模拟测试卷附答案解析
- 2024年忻州职业技术学院单招职业倾向性测试题库附答案解析
- 2025贵州省专业技术人员继续教育公需科目考试题库(2025公需课课程)
- 美国国家公园管理
- 人教版五年级语文上册期末考试卷【含答案】
- 四川省2025年高考综合改革适应性演练测试化学试题含答案
- 篮球原地投篮教学
- 医疗机构安全生产事故综合应急预案
- 水利信息化计算机监控系统单元工程质量验收评定表、检查记录
- 《管理学原理》课程期末考试复习题库(含答案)
- DL-T+5174-2020燃气-蒸汽联合循环电厂设计规范
- 消费者在直播带货中冲动行为的影响因素探究
- 人工智能中的因果驱动智慧树知到期末考试答案章节答案2024年湘潭大学
评论
0/150
提交评论