版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市塘沽一中2026届高二数学第一学期期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线的焦点为,过点且倾斜角为锐角的直线与交于、两点,过线段的中点且垂直于的直线与的准线交于点,若,则的斜率为()A. B.C. D.2.下列命题中,真命题的个数为()(1)是为双曲线的充要条件;(2)若,则;(3)若,,则;(4)椭圆上的点距点最近的距离为;A.个 B.个C.个 D.个3.已知双曲线C:的右焦点为,一条渐近线被圆截得的弦长为2b,则双曲线C的离心率为()A. B.C.2 D.4.平面的法向量为,平面的法向量为,则下列命题正确的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直5.下列说法中正确的是()A.命题“若,则”的否命题是真命题;B.若为真命题,则为真命题;C.“”是“”的充分条件;D.若命题:“,”,则:“,”6.下列双曲线中,渐近线方程为的是A. B.C. D.7.胡萝卜中含有大量的胡萝卜素,摄入人体消化器官后,可以转化为维生素,现从,两个品种的胡萝卜所含的胡萝卜素(单位:)得到茎叶图如图所示,则下列说法不正确的是A. B.的方差大于的方差C.品种的众数为 D.品种的中位数为8.已知等比数列的公比q为整数,且,,则()A.2 B.3C.-2 D.-39.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A. B.C. D.610.已知数列为等差数列,若,则()A.1 B.2C.3 D.411.若函数的导函数为偶函数,则的解析式可能是()A. B.C. D.12.已知向量=(3,0,1),=(﹣2,4,0),则3+2等于()A.(5,8,3) B.(5,﹣6,4)C.(8,16,4) D.(16,0,4)二、填空题:本题共4小题,每小题5分,共20分。13.已知锐角的内角,,的对边分别为,,,且.若,则外接圆面积的最小值为______14.如图,SD是球O的直径,A、B、C是球O表面上的三个不同的点,,当三棱锥的底面是边长为3的正三角形时,则球O的半径为______.15.在某项测量中,测量结果ξ服从正态分布(),若ξ在内取值的概率为0.4,则ξ在内取值的概率为______16.数列的前项和为,则该数列的通项公式___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆过点,离心率.(1)求椭圆的方程;(2)设直线与椭圆相交于A、B两点,求.18.(12分)已知两动圆:和:,把它们的公共点的轨迹记为曲线,若曲线与轴的正半轴的交点为,取曲线上的相异两点、满足:且点与点均不重合.(1)求曲线的方程;(2)证明直线恒经过一定点,并求此定点的坐标;19.(12分)设:函数的定义域为;:不等式对任意的恒成立(1)如果是真命题,求实数的取值范围;(2)如果“”为真命题,“”为假命题,求实数的取值范围20.(12分)已知在等差数列中,,(1)求的通项公式;(2)若,求数列的前项和21.(12分)已知集合,设(1)若p是q的充分不必要条件,求实数a的取值范围;(2)若¬q是¬p的必要不充分条件,求实数a的取值范围22.(10分)已知椭圆C:的长轴长为4,过C的一个焦点且与x轴垂直的直线被C截得的线段长为3(1)求C的方程;(2)若直线:与C交于A,B两点,线段AB的中垂线与C交于P,Q两点,且,求m的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设直线的方程为,其中,设点、、,将直线的方程与抛物线的方程联立,列出韦达定理,求出、,根据条件可求得的值,即可得出直线的斜率.【详解】抛物线的焦点为,设直线的方程为,其中,设点、、,联立可得,,,所以,,,,直线的斜率为,则直线的斜率为,所以,,因为,则,因为,解得,因此,直线的斜率为.故选:C.2、A【解析】利用方程表示双曲线求出的取值范围,利用集合的包含关系可判断(1)的正误;直接判断命题的正误,可判断(2)的正误;利用空间向量垂直的坐标表示可判断(3)的正误;利用椭圆的有界性可判断(4)的正误.【详解】对于(1),若曲线为双曲线,则,即,解得或,因为或,因此,是为双曲线的充分不必要条件,(1)错;对于(2),若,则或,(2)错;对于(3),,则,(3)对;对于(4),设点为椭圆上一点,则且,则点到点的距离为,(4)错.故选:A.3、A【解析】求出圆心到渐近线的距离,根据弦长建立关系即可求解.【详解】双曲线的渐近线方程为,即,则点到渐近线的距离为,因为弦长为,圆半径为,所以,即,因为,所以,则双曲线的离心率为.故选:A.4、B【解析】根据可判断两平面垂直.【详解】因为,所以,所以,垂直.故选:B.5、C【解析】A.写出原命题的否命题,即可判断其正误;B.根据为真命题可知的p,q真假情况,由此判断的真假;C.看命题“”能否推出“”,即可判断;D.根据含有一个量词的命题的否定的要求,即可判断该命题的正误.【详解】A.命题“若x=y,则sinx=siny”,其否命题为若“,则”为假命题,因此A不正确;B.命题“”为真命题,则p,q中至少有一个为真命题,当二者为一真一假时,为假命题,故B不正确C.命题“若,则”为真命题,故C正确;D.命题:“,”,为特称命题,其命题的否定:“,”,故D错误,故选:C6、A【解析】由双曲线的渐进线的公式可行选项A的渐进线方程为,故选A.考点:本题主要考查双曲线的渐近线公式.7、C【解析】读懂茎叶图,分别计算出众数、中位数、方差,然后对各选项进行判断【详解】由茎叶图知,品种所含胡萝卜素普遍高于品种,所以,故A正确;品种的数据波动比品种的数据波动大,所以的方差大于的方差,故B正确;品种的众数为与,故C错误;品种的数据的中位数为,故D正确.故选.【点睛】本题主要考查了对数据的分析,首先要读懂茎叶图,然后计算出众数、中位数、方差,即可对各选项进行判断,较为基础8、A【解析】由等比数列的性质有,结合已知求出基本量,再由即可得答案.【详解】因为,,且q为整数,所以,,即q=2.所以.故选:A9、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.10、D【解析】利用等差数列下标和的性质求值即可.【详解】由等差数列下标和性质知:.故选:D11、C【解析】根据题意,求出每个函数的导函数,进而判断答案.【详解】对A,,为奇函数;对B,,为奇函数;对C,,为偶函数;对D,,既不是奇函数也不是偶函数.故选:C.12、A【解析】直接根据空间向量的线性运算,即可得到答案;【详解】,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用二倍角公式求出,即可得到,再利用余弦定理及基本不等式求出的取值范围,再利用正弦定理求出外接圆的半径,即可求出外接圆的面积;【详解】解:因为,所以,解得或(舍去).又为锐角三角形,所以.因为,当且仅当时等号成立,所以.外接圆的半径,故外接圆面积的最小值为故答案为:14、【解析】由三棱锥是正三棱锥,利用正弦定理得出三角形外接圆的半径,进而求出,再由余弦定理得出球O的半径.【详解】因为,所以平面,三棱锥是正三棱锥,设为三角形外接圆的圆心,则在上,连接,,由得出,所以,在中,,即,解得,则球O的半径为.故答案为:15、4##【解析】根据正态分布曲线的对称性求解【详解】因为ξ服从正态分布(),即正态分布曲线的对称轴为,根据正态分布曲线的对称性,可知ξ在与取值的概率相同,所以ξ在内取值的概率为0.4.故答案为:0.416、【解析】根据与关系求解即可.【详解】当时,,当时,,检验:,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据题意得,,再结合即可求得答案.(2)设,,直接联立方程得,再结合韦达定理,利用弦长公式和点到线的距离公式得,点M到直线的距离,进而可得.【详解】解:(1)由题意得,,结合,解得所以椭圆的方程为:.(2)由得即,经验证.设,.所以,,故因为点M到直线的距离,所以.【点睛】本题考查直线与椭圆位置关系,椭圆的方程,弦长公式等,考查运算能力,是基础题.18、(1);(2)证明见解析,.【解析】(1)设两动圆的公共点为,则有,运用椭圆的定义,即可得到,,,进而得到的轨迹方程;(2),设,,,,设出直线方程,联立方程组,利用韦达定理法及向量的数量积的坐标表示,即可得到定点.【小问1详解】设两动圆的公共点为,则有由椭圆的定义可知的轨迹为椭圆,设方程为,则,,所以曲线的方程是:【小问2详解】由题意可知:,且直线斜率存在,设,,设直线:,联立方程组,可得,,,因为,所以有,把代入整理化简得,或舍,因为点与点均不重合,所以直线恒过定点19、(1)(2)【解析】(1)由对数函数性质,转化为对任意的恒成立,结合二次函数的性质,即可求解;(2)利用基本不等式,求得当命题是真命题,得到,结合“”为真命题,“”为假命题,分类讨论,即可求解.【小问1详解】解:因为是真命题,所以对任意的恒成立,当时,不等式,显然在不能恒成立;当时,则满足解得,故实数的取值范围为【小问2详解】解:因为,所以,当且仅当时,等号成立若是真命题,则;因为“”为真命题,“”为假命题,所以与一真一假当真假时,所以;当假真时,所以,综上,实数的取值范围为20、(1)(2)【解析】(1)设的公差为,由等差数列的通项公式结合条件可得答案.(2)由(1)可得,由错位相减法可得答案.【小问1详解】设的公差为,由已知得且,解得,,所以的通项公式为【小问2详解】由(1)可得,所以,所以,两式相减得:,所以,所以21、(1)(2)【解析】(1)先解出集合A、B,然后根据p是q的充分不必要条件列出不等式组求解.(2)¬q是¬p的必要不充分条件可知q是p的充分不必要条件,然后求解.【小问1详解】解:由题意得:,p是q的充分不必要条件,所以集合A是集合B的真子集∴,即,所以实数a的取值范围.【小问2详解】¬q是¬p的必要不充分条件p是q的必要不充分条件,即q是p的充分不必要条件集合B是集合A的真子集∴,故实数a的取值范围为22、(1);(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年黄冈中学(含黄冈中学实验学校)专项公开招聘教师16人备考题库有答案详解
- 合肥市医疗器械检验检测中心有限公司2025年下半年第二批社会招聘备考题库及参考答案详解1套
- 3D可视化技术对神经外科术后并发症的预防作用
- 四川托普信息技术职业学院2025-2026学年第二学期师资招聘备考题库含答案详解
- 2025年保山市隆阳区瓦房彝族苗族乡中心卫生院乡村医生招聘备考题库及一套完整答案详解
- 2025年杭州之江湾股权投资基金管理有限公司招聘备考题库及1套参考答案详解
- 2025年四川省教育融媒体中心(四川教育电视台)公开招聘编外工作人员备考题库及参考答案详解
- 统编七年级上第3课 远古的传说 课件
- 2025年凯欣粮油有限公司招聘备考题库完整答案详解
- 2025年新疆吐鲁番少数民族毕业生招聘7人备考题库带答案详解
- 酒驾恢复合同范本
- 湖南省长沙市望城区2024-2025学年四年级上学期期末考试数学试题
- 保安押运合同范本
- 甘肃省兰州新区2024-2025学年六年级上学期期末考试数学试题
- 公交车站设施维护管理方案
- 2024初级会计真题及答案(实务+经济法)
- 2025中国融通资产管理集团有限公司社会招聘考试笔试参考题库附答案解析
- 2025心肺复苏理论考试试题及答案
- 雨课堂在线学堂《不朽的艺术:走进大师与经典》课后作业单元考核答案
- 公司海藻繁育工合规化技术规程
- 红薯课件教学课件
评论
0/150
提交评论