上海李惠利中学七年级数学压轴题专题_第1页
上海李惠利中学七年级数学压轴题专题_第2页
上海李惠利中学七年级数学压轴题专题_第3页
上海李惠利中学七年级数学压轴题专题_第4页
上海李惠利中学七年级数学压轴题专题_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海李惠利中学七年级数学压轴题专题一、七年级上册数学压轴题1.如图,两条直线AB、CD相交于点O,且∠AOC=∠AOD,射线OM(与射线OB重合)绕O点逆时针方向旋转,速度为15°/s,射线ON(与射线OD重合)绕O点顺时值方向旋转,速度为12°/s,两射线,同时运动,运动时间为t秒(本题出现的角均指小于平角的角)(1)图中一定有______个直角;当t=2时,∠MON的度数为_____,∠BON的度数为_____,∠MOC的度数为_____;(2)当0<t<12时,若∠AOM=3∠AON-60°,试求出t的值.(3)当0<t<6时,探究的值,在t满足怎样的条件是定值,在t满足怎样的条件不是定值.2.已知数轴上的A、B、C、D四点所表示的数分别是a、b、c、d,且(a+16)2+(d+12)2=﹣|b﹣8|﹣|c﹣10|.(1)求a、b、c、d的值;(2)点A,B沿数轴同时出发相向匀速运动,4秒后两点相遇,点B的速度为每秒2个单位长度,求点A的运动速度;(3)A,B两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,C点以每秒1个单位长度的速度向数轴正方向开始运动,若t秒时有2AB=CD,求t的值;(4)A,B两点以(2)中的速度从起始位置同时出发,相向而行当A点运动到C点时,迅速以原来速度的2倍返回,到达出发点后,保持改变后的速度又折返向C点运动;当B点运动到A点的起始位置后停止运动.当B点停止运动时,A点也停止运动.求在此过程中,A,B两点同时到达的点在数轴上对应的数.3.如图一,点在线段上,图中有三条线段、和,若其中一条线段的长度是另外一条线段长度的倍,则称点是线段的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”)(问题解决)(2)如图二,点和在数轴上表示的数分别是和,点是线段的巧点,求点在数轴上表示的数。(应用拓展)(3)在(2)的条件下,动点从点处,以每秒个单位的速度沿向点匀速运动,同时动点从点出发,以每秒个单位的速度沿向点匀速运动,当其中一点到达中点时,两个点运动同时停止,当、、三点中,其中一点恰好是另外两点为端点的线段的巧点时,直接写出运动时间的所有可能值.4.已知在数轴上,一动点P从原点出发向左移动4个单位长度到达点A,再向右移动7个单位长度到达点B.(1)求点A、B表示的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为9,若存在,写出点P表示的数;若不存在,说明理由;(3)若小虫M从点A出发,以每秒0.5个单位长度沿数轴向右运动,另一只小虫N从点B出发,以每秒0.2个单位长度沿数轴向左运动.设两只小虫在数轴上的点C处相遇,点C表示的数是多少?5.如图,在数轴上点表示数,点表示数b,点表示数c,其中.若点与点B之间的距离表示为,点与点之间的距离表示为,点在点之间,且满足.(1);(2)若点分别从、同时出发,相向而行,点的速度是1个单位/秒,点的速度是2个单位秒,经过多久后相遇.(3)动点从点位置出发,沿数轴以每秒1个单位的速度向终点运动,设运动时间为秒,当点运动到点时,点从点出发,以每秒2个单位的速度沿数轴向点运动,点到达点后,再立即以同样的速度返回,运动到终点,问:在点开始运动后,两点之间的距离能否为2个单位?如果能,请求出运动的时间的值以及此时对应的点所表示的数;如果不能,请说明理由.6.阅读下面的材料并解答问题:点表示数,点表示数,点表示数,且点到点的距离记为线段的长,线段的长可以用右边的数减去左边的数表示,即.若是最小的正整数,且满足.(1)_________,__________.(2)若将数轴折叠,使得与点重合:①点与数_________表示的点重合;②若数轴上两点之间的距离为2018(在的左侧),且两点经折叠后重合,则两点表示的数是_______、__________.(3)点开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,设运动时间为秒,试探索:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出其值.7.在数轴上,点A代表的数是-12,点B代表的数是2,AB表示点A与点B之间的距离.(1)①若点P为数轴上点A与点B之间的一个点,且AP=6,则BP=_____;②若点P为数轴上一点,且BP=2,则AP=_____;(2)若C点为数轴上一点,且点C到点A点的距离与点C到点B的距离的和是20,求C点表示的数;(3)若点M从点A出发,点N从点B出发,且M、N同时向数轴负方向运动,M点的运动速度是每秒6个单位长度,N点的运动速度是每秒8个单位长度,当MN=2时求运动时间t的值.8.点A,B为数轴上的两点,点A对应的数为a,点B对应的数为3,a3=﹣8.(1)求A,B两点之间的距离;(2)若点C为数轴上的一个动点,其对应的数记为x,试猜想当x满足什么条件时,点C到A点的距离与点C到B点的距离之和最小.请写出你的猜想,并说明理由;(3)若P,Q为数轴上的两个动点(Q点在P点右侧),P,Q两点之间的距离为m,当点P到A点的距离与点Q到B点的距离之和有最小值4时,m的值为.9.如图,在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c﹣7)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.10.已知:,OB、OM、ON,是内的射线.(1)如图1,若OM平分,ON平分.当射线OB绕点O在内旋转时,=

度.(2)OC也是内的射线,如图2,若,OM平分,ON平分,当射线OB绕点O在内旋转时,求的大小.(3)在(2)的条件下,当射线OB从边OA开始绕O点以每秒的速度逆时针旋转t秒,如图3,若,求t的值.11.如图1,在内部作射线,,在左侧,且.(1)图1中,若平分平分,则______;(2)如图2,平分,探究与之间的数量关系,并证明;(3)设,过点O作射线,使为的平分线,再作的角平分线,若,画出相应的图形并求的度数(用含m的式子表示).12.如图,已知∠AOB=120°,射线OP从OA位置出发,以每秒2°的速度顺时针向射线OB旋转;与此同时,射线OQ以每秒6°的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动.设旋转时间为t秒.(1)当t=2时,求∠POQ的度数;(2)当∠POQ=40°时,求t的值;(3)在旋转过程中,是否存在t的值,使得∠POQ=∠AOQ?若存在,求出t的值;若不存在,请说明理由.13.如图,O为直线AB上的一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°),的直角顶点放在O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON与OC重合?(2)如图2,经过t秒后,OM恰好平分∠BOC,求此时t的值.(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC平分∠MOB?请画出图并说明理由.14.如图①,直线、相交于点O,射线,垂足为点O,过点O作射线使.(1)将图①中的直线绕点O逆时针旋转至图②,在的内部,当平分时,是否平分,请说明理由;(2)将图①中的直线绕点O逆时针旋转至图③,在的内部,探究与之间的数量关系,并说明理由;(3)若,将图①中的直线绕点O按每秒5°的速度逆时针旋转度设旋转的时间为t秒,当与互余时,求t的值.15.已知是关于x的二次二项式,A,B是数轴上两点,且A,B对应的数分别为a,b.(1)求线段AB的中点C所对应的数;(2)如图,在数轴上方从点C出发引出射线CD,CE,CF,CG,且CF平分∠ACD,CG平分∠BCE,试猜想∠DCE与∠FCG之间是否存在确定的数量关系,并说明理由;(3)在(2)的条件下,已知∠DCE=20°,∠ACE=30°,当∠DCE绕着点C以2°/秒的速度逆时针旋转t秒()时,∠ACF和∠BCG中的一个角的度数恰好是另一个角度数的两倍,求t的值16.如图,∠AOB=150°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每秒6°;射线OD从OB开始,绕点O顺时针旋转,旋转的速度为每秒14°,OC和OD同时旋转,设旋转的时间为t秒(0≤t≤25).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,∠COD=90°;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC、OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请直接写出所有满足题意的t的取值,若不存在,请说明理由.17.定义:在同一平两内,有公共端点的三条射线中,一条射线是另两条射线组成夹角的角平分线,我们称这三条射线为“共生三线”.如图为一量角器的平面示意图,为量角器的中心.作射线,,,并将其所对应的量角器外圈刻度分别记为,,.(1)若射线,,为“共生三线”,且为的角平分线.①如图1,,,则______;②当,时,请在图2中作出射线,,,并直接写出的值;③根据①②的经验,得______(用含,的代数式表示).(2)如图3,,.在刻度线所在直线上方区域内,将,,按逆时针方向绕点同时旋转,旋转速度分别为每秒,,,若旋转秒后得到的射线,,为“共生三线”,求的值.18.如图①,O是直线上的一点,是直角,平分.(1)若,则____________°,____________°;(2)将图①中的绕顶点O顺时针旋转至图②的位置,其他条件不变,若,求的度数(用含的式子表示);(3)将图①中的绕顶点O顺时针旋转至图③的位置,其他条件不变,直接写出和的度数之间的关系:__________________.(不用证明)19.以直线AB上一点O为端点作射线OC,使∠BOC=40°,将一个直角三角板的直角顶点放在O处,即∠DOE=90°.(1)如图1,若直角三角板DOE的一边OE放在射线OA上,则∠COD=;(2)如图2,将直角三角板DOE绕点O顺时针转动到某个位置,若OE恰好平分∠AOC,则∠COD=;(3)将直角三角板DOE绕点O顺时针转动(OD与OB重合时为停止)的过程中,恰好有∠COD=∠AOE,求此时∠BOD的度数.20.同学们,我们在本期教材中曾经学习过绝对值的概念:在数轴上,表示一个数的点与原点的距离叫做这个数的绝对值,记作.实际上,数轴上表示数的点与原点的距离可记作;数轴上表示数的点与表示数2的点的距离可记作,也就是说,在数轴上,如果点表示的数记为点表示的数记为,则两点间的距离就可记作.(学以致用)(1)数轴上表示1和的两点之间的距离是_______;(2)数轴上表示与的两点和之间的距离为2,那么为________.(解决问题)如图,已知分别为数轴上的两点,点表示的数是,点表示的数是50.(3)现有一只蚂蚁从点出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只蚂蚁恰好从点出发,以每秒2个单位长度的速度沿数轴向右移动.①求两只蚂蚁在数轴上相遇时所用的时间;②求两只蚂蚁在数轴上距离10个单位长度时的时间.(数学理解)(4)数轴上两点对应的数分别为,已知,点从出发向右以每秒3个单位长度的速度运动.表达出秒后之间的距离___________(用含的式子表示).【参考答案】***试卷处理标记,请不要删除一、七年级上册数学压轴题1.(1)4;144°,114°,60°;(2)s或10s;(3),当0<t<时,的值不是定值,当<t<6时,的值是3【分析】(1)根据两条直线AB,CD相交于点O,∠AOC=∠AOD,可得图中一定解析:(1)4;144°,114°,60°;(2)s或10s;(3),当0<t<时,的值不是定值,当<t<6时,的值是3【分析】(1)根据两条直线AB,CD相交于点O,∠AOC=∠AOD,可得图中一定有4个直角;当t=2时,根据射线OM,ON的位置,可得∠MON的度数,∠BON的度数以及∠MOC的度数;(2)分两种情况进行讨论:当0<t≤7.5时,当7.5<t<12时,分别根据∠AOM=3∠AON-60°,列出方程式进行求解,即可得到t的值;(3)先判断当∠MON为平角时t的值,再以此分两种情况讨论:当0<t<时,当<t<6时,分别计算的值,根据结果作出判断即可.【详解】解:(1)如图所示,∵两条直线AB,CD相交于点O,∠AOC=∠AOD,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°-30°=60°;故答案为:4;144°,114°,60°;(2)当ON与OA重合时,t=90÷12=7.5(s),当OM与OA重合时,t=180°÷15=12(s),如图所示,当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(90°-12t°)-60°,解得t=;如图所示,当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(12t°-90°)-60°,解得t=10;综上所述,当∠AOM=3∠AON-60°时,t的值为s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=,①如图所示,当0<t<时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴==(不是定值),②如图所示,当<t<6时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=360°-(∠BOM+∠BOD+∠DON)=360°-(15t°+90°+12t°)=270°-27t°,∴===3(定值),综上所述,当0<t<时,的值不是定值,当<t<6时,的值是3.【点睛】本题属于角的计算综合题,主要考查了角的和差关系的运用,解决问题的关键是将相关的角用含t的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.2.(1)a=﹣16,b=8,c=10,d=﹣12;(2)点A的运动速度为每秒4个单位长度;(3)t的值是秒或秒;(4)A,B两点同时到达的点在数轴上表示的数为:0或9或10.2.【分析】(1)根据解析:(1)a=﹣16,b=8,c=10,d=﹣12;(2)点A的运动速度为每秒4个单位长度;(3)t的值是秒或秒;(4)A,B两点同时到达的点在数轴上表示的数为:0或9或10.2.【分析】(1)根据平方和绝对值的非负性即可求出结论;(2)设点A的运动速度为每秒v个单位长度,根据题意,列出一元一次方程即可求出结论;(3)根据题意,画出对称轴,然后用t表示点A、B、C表示的数,最后分类讨论列出方程即可求出结论;(4)求出B点运动至A点所需的时间,然后根据点A和点B相遇的情况分类讨论,列出方程求出t的值即可求出结论.【详解】(1)∵(a+16)2+(d+12)2=﹣|b﹣8|﹣|c﹣10|,(a+16)2+(d+12)2+|b﹣8|+|c﹣10|=0,∴a=﹣16,b=8,c=10,d=﹣12;(2)设点A的运动速度为每秒v个单位长度,4v+4×2=8+16,v=4,答:点A的运动速度为每秒4个单位长度;(3)如图1,t秒时,点A表示的数为:﹣16+4t,点B表示的数为:8+2t,点C表示的数为:10+t.∵2AB=CD,①2[(﹣16+4t)﹣(8+2t)]=10+t+12,2(﹣24+2t)=22+t,﹣48+4t=22+t,3t=70,t;②2[(8+2t)﹣(﹣16+4t)]=10+t+12,2(24﹣2t)=22+t,5t=26,t,综上,t的值是秒或秒;(4)B点运动至A点所需的时间为12(s),故t≤12,①由(2)得:当t=4时,A,B两点同时到达的点表示的数是﹣16+4×4=0;②当点A从点C返回出发点时,若与B相遇,由题意得:6.5(s),3.25(s),∴点A到C,从点C返回到出发点A,用时6.5+3.25=9.75(s),则2×4×(t﹣6.5)=10﹣8+2t,t=9<9.75,此时A,B两点同时到达的点表示的数是8﹣9×2=﹣10;③当点A第二次从出发点返回点C时,若与点B相遇,则8(t﹣9.75)+2t=16+8,解得:t=10.2;综上所述:A,B两点同时到达的点在数轴上表示的数为:0或9或10.2.【点睛】此题考查的是一元一次方程的应用、数轴与动点问题,掌握平方、绝对值的非负性、行程问题公式和分类讨论的数学思想是解决此题的关键.3.(1)是;(2)10或0或20;(3);t=6;;t=12;;.【分析】(1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可;(2)由题意设C点表示的数为解析:(1)是;(2)10或0或20;(3);t=6;;t=12;;.【分析】(1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可;(2)由题意设C点表示的数为x,再根据新定义列出合适的方程即可;(3)根据题意先用t的代数式表示出线段AP,AQ,PQ,再根据新定义列出方程,得出合适的解即可求出t的值.【详解】解:(1)因原线段是中点分成的短线段的2倍,所以线段的中点是这条线段的巧点,故答案为:是;(2)设C点表示的数为x,则AC=x+20,BC=40-x,AB=40+20=60,根据“巧点”的定义可知:①当AB=2AC时,有60=2(x+20),解得,x=10;②当BC=2AC时,有40-x=2(x+20),解得,x=0;③当AC=2BC时,有x+20=2(40-x),解得,x=20.综上,C点表示的数为10或0或20;(3)由题意得,(i)、若0≤t≤10时,点P为AQ的“巧点”,有①当AQ=2AP时,60-4t=2×2t,解得,,②当PQ=2AP时,60-6t=2×2t,解得,t=6;③当AP=2PQ时,2t=2(60-6t),解得,;综上,运动时间的所有可能值有;t=6;;(ii)、若10<t≤15时,点Q为AP的“巧点”,有①当AP=2AQ时,2t=2×(60-4t),解得,t=12;②当PQ=2AQ时,6t-60=2×(60-4t),解得,;③当AQ=2PQ时,60-4t=2(6t-60),解得,.综上,运动时间的所有可能值有:t=12;;.故,运动时间的所有可能值有:;t=6;;t=12;;.【点睛】本题是新定义题,是数轴的综合题,主要考查数轴上的点与数的关系,数轴上两点间的距离,一元一次方程的应用,解题的关键是根据新定义列出方程并进行求解.4.(1);(2)或;(3)【分析】(1)由数轴上的点的移动规律,左减右加,从而可得答案;(2)由题意得:再分当时,当<<时,当时,三种情况讨论,从而可得答案;(3)设两只小虫的相遇时运动时解析:(1);(2)或;(3)【分析】(1)由数轴上的点的移动规律,左减右加,从而可得答案;(2)由题意得:再分当时,当<<时,当时,三种情况讨论,从而可得答案;(3)设两只小虫的相遇时运动时间为,结合题意可得:解方程求解时间,再求点对应的数即可.【详解】解:(1)动点P从原点出发向左移动4个单位长度到达点A,则点对应的数为:再向右移动7个单位长度到达点B,则点对应的数为:(2)存在,理由如下:设对应的数为:则由题意得:当时,经检验:符合题意,当<<时,方程左边此时方程无解,当时,经检验:符合题意,综上:点P到点A和点B的距离之和为9时,或(3)设两只小虫的相遇时运动时间为,结合题意可得:点对应的数为:【点睛】本题考查的是数轴上动点问题,数轴上两点之间的距离,绝对值方程的解法,一元一次方程的应用,掌握数轴上点运动后对应的数的表示规律,两点间的距离,分类讨论是解题的关键.5.(1)5;(2)2秒;(3)当t的值为6或2时,M、N两点之间的距离为2个单位,此时点M表示的数为5或9.【分析】(1)用b表示BC、AB的长度,结合BC=2AB可求出b值;(2)根据相遇时间解析:(1)5;(2)2秒;(3)当t的值为6或2时,M、N两点之间的距离为2个单位,此时点M表示的数为5或9.【分析】(1)用b表示BC、AB的长度,结合BC=2AB可求出b值;(2)根据相遇时间=相遇路程÷速度和,即可得出结论;(3)用含t的代数式表示出点M,N表示的数,结合MN=2,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.【详解】(1)∵.又∵点B在点A、C之间,且满足BC=2AB,

∴9-b=2(b-3),

∴b=5.

(2)AC=9-3=66÷(2+1)=2,即两秒后相遇.(3)M到达B点时t=(5-3)÷1=2(秒);M到达C点时t=(9-3)÷1=6(秒);N到达C时t=(9-3)÷2+2=5(秒)N回到A点用时t=(9-3)÷2×2+2=8(秒)当0≤t≤5时,N没有到达C点之前,此时点N表示的数为3+2(t-2)=2t-1;M表示的数为3+tMN==2解得(舍去)或此时M表示的数为5当5≤t≤6时,N从C点返回,M还没有到达终点C点N表示的数为9-2(t-5)=-2t+19;M表示的数为3+tMN==2解得或(舍去)此时M表示的数为9当6≤t≤8时,N从C点返回,M到达终点C此时M表示的数是9点N表示的数为9-2(t-5)=-2t+19;MN==2解得此时M表示的数是9综上所述:当t的值为6或2时,M、N两点之间的距离为2个单位,此时点M表示的数为5或9.【点睛】本题考查了数轴上两点间的距离以及一元一次方程的应用,解题的关键是找准等量关系,正确列出一元一次方程.6.(1)1,5;(2)①3;②-1007,1011;(3)不变,值为8【分析】(1)利用非负性可求解;(2)①由中点坐标公式可求AC的中点表示的数是2,由折叠的性质可求解;

②由折叠的性质可求解解析:(1)1,5;(2)①3;②-1007,1011;(3)不变,值为8【分析】(1)利用非负性可求解;(2)①由中点坐标公式可求AC的中点表示的数是2,由折叠的性质可求解;

②由折叠的性质可求解;

(3)利用两点距离公式分别求出AC,AB,表示出3AC-5AB,再化简即可求解.【详解】解:(1)∵b是最小的正整数,∴b=1,

∵(c-5)2+|a+b|=0.∴c=5,a=-b=-1,

故答案为:1,5;

(2)①∵将数轴折叠,使得A与C点重合:

∴AC的中点表示的数是(-1+5)÷2=2,∴与点B重合的数=2-1+2=3;②点P表示的数为2-2018÷2=-1007,点Q表示的数为2+2018÷2=1011,故答案为:-1007,1011;(3)3AC-5AB的值不变.理由是:点A表示的数为:-1-2t,点B表示的数为:1+t,点C表示的数为:5+3t,∴AC=5+3t-(-1-2t)=6+5t,AB=1+t-(-1-2t)=2+3t,3AC-5AB=3(6+5t)-5(2+3t)=8,所以3AC-5AB的值不变,为8.【点睛】本题考查了数轴,非负性,折叠的性质,两点距离公式,灵活运用这些性质解决问题是本题的关键.7.(1)①8;②16;(2)-15或5;(3)6或8【分析】(1)①根据题目要求,P在数轴上点A与B之间,所以根据BP=AB-AP进行求解②需要考虑两种情况,即P在数轴上点A与B之间时和当P不在解析:(1)①8;②16;(2)-15或5;(3)6或8【分析】(1)①根据题目要求,P在数轴上点A与B之间,所以根据BP=AB-AP进行求解②需要考虑两种情况,即P在数轴上点A与B之间时和当P不在数轴上点A与B之间时.当P在数轴上点A与B之间时,AP=AB-BP.当P不在数轴上点A与B之间时,此时有两种情况,一种是超越A点,在A点左侧,此时BP>14,不符合题目要求.另一种情况是P在B点右侧,此时根据AP=AB+BP作答.(2)根据前面分析,C不可能在AB之间,所以,C要么在A左侧,要么在B右侧.根据这两种情况分别进行讨论计算.(3)分点M在点N的左侧和点M在点N的右侧,两种情况分别列出方程求解.【详解】解:(1)①∵AB总距离是2-(-12)=14,P在数轴上点A与B之间,∴BP=AB-AP=14-6=8,故答案为:8.②P在数轴上点A与B之间时,AP=AB-BP=14-2=12;当P不在数轴上点A与B之间时,因为AB=14,所以P只能在B右侧,此时BP=2,AP=AB+BP=14+2=16,故答案为:16.(2)假设C为x,当C在A左侧时,AC=-12-x,BC=2-x,AC+BC=20,则-12-x+2-x=20,解得x=-15,当C在B右侧时,AC=x-(-12),BC=x-2,AC+BC=20,则x-(-12)+x-2=20,解得x=5,∴点C表示的数为-15或5;(3)当M在点N左侧时,2-8t-(-12-6t)=2,解得:t=6;当M在点N右侧时,-12-6t-(2-8t)=2,解得:t=8,∴MN=2时,t的值为6或8.【点睛】本题考查了动点问题,一元一次方程的应用.在充分理解题目要求的基础上,可借助数轴用数形结合的方法求解.在解答过程中,注意动点问题的多解可能,并针对每一种可能进行讨论分析.8.(1)5;(2)当﹣2<x<3时,点C到A点的距离与点C到B点的距离之和最小,最小值为5,见详解;(3)1或9【分析】(1)先根据立方根的定义求出a,再根据两点之间的距离公式即可求解;(2)当解析:(1)5;(2)当﹣2<x<3时,点C到A点的距离与点C到B点的距离之和最小,最小值为5,见详解;(3)1或9【分析】(1)先根据立方根的定义求出a,再根据两点之间的距离公式即可求解;(2)当点C在数轴上A、B两点之间时,点C到A点的距离与点C到B点的距离之和最小,依此即可求解;(3)分两种情况:点P在点A的左边,点P在点B的右边,进行讨论即可求解.【详解】解:(1)∵a3=﹣8.∴a=﹣2,∴AB=|3﹣(﹣2)|=5;(2)点C到A的距离为|x+2|,点C到B的距离为|x﹣3|,∴点C到A点的距离与点C到B点的距离之和为|x+2|+|x﹣3|,当距离之和|x+2|+|x﹣3|的值最小,﹣2<x<3,此时的最小值为3﹣(﹣2)=5,∴当﹣2<x<3时,点C到A点的距离与点C到B点的距离之和最小,最小值为5;(3)设点P所表示的数为x,∵PQ=m,Q点在P点右侧,∴点Q所表示的数为x+m,∴PA=|x+2|,QB=|x+m﹣3|∴点P到A点的距离与点Q到B点的距离之和为:PA+QB=|x+2|+|x+m﹣3|当x在﹣2与3﹣m之间时,|x+2|+|x+m﹣3|最小,最小值为|﹣2﹣(3﹣m)|=4,①﹣2﹣(3﹣m)=4,解得,m=9,②(3﹣m)﹣(﹣2)=4时,解得,m=1,故答案为:1或9.【点睛】本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.9.(1)-2,1,c=7;(2)4;(3)3t+3,5t+9,2t+6;(4)不变,3BC﹣2AB=12.【分析】(1)利用|a+2|+(c−7)2=0,得a+2=0,c−7=0,解得a,c解析:(1)-2,1,c=7;(2)4;(3)3t+3,5t+9,2t+6;(4)不变,3BC﹣2AB=12.【分析】(1)利用|a+2|+(c−7)2=0,得a+2=0,c−7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)AB原来的长为3,所以AB=t+2t+3=3t+3,再由AC=9,得AC=t+4t+9=5t+9,由原来BC=6,可知BC=4t−2t+6=2t+6;(4)由3BC−2AB=3(2t+6)−2(3t+3)求解即可.【详解】(1)∵|a+2|+(c−7)2=0,∴a+2=0,c−7=0,解得a=−2,c=7,∵b是最小的正整数,∴b=1;故答案为:−2;1;7.(2)(7+2)÷2=4.5,对称点为7−4.5=2.5,2.5+(2.5−1)=4;故答案为:4.(3)依题意可得AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3;5t+9;2t+6.(4)不变.3BC−2AB=3(2t+6)−2(3t+3)=12.【点睛】本题主要考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.10.(1)80;(2)70°;(3)26【分析】(1)根据角平分线的定义进行角的计算即可;(2)依据OM平分∠AOC,ON平分∠BOD,即可得到∠MOC=∠AOC,∠BON=∠BOD,再根据∠MO解析:(1)80;(2)70°;(3)26【分析】(1)根据角平分线的定义进行角的计算即可;(2)依据OM平分∠AOC,ON平分∠BOD,即可得到∠MOC=∠AOC,∠BON=∠BOD,再根据∠MON=∠MOC+∠BON-∠BOC进行计算即可;(3)依据∠AOM=(10°+2t+20°),∠DON=(160°-10°-2t),∠AOM:∠DON=2:3,即可得到3(30°+2t)=2(150°-2t),进而得出t的值.【详解】解:(1)∵∠AOD=160°,OM平分∠AOB,ON平分∠BOD,∴∠MOB=∠AOB,∠BON=∠BOD,∴∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°,故答案为:80;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠AOC,∠BON=∠BOD,∴∠MON=∠MOC+∠BON-∠BOC

=∠AOC+∠BOD-∠BOC=(∠AOC+∠BOD)-∠BOC=×180-20=70°;(3)∵∠AOM=(2t+20°),∠DON=(160°-2t),又∠AOM:∠DON=2:3,∴3(20°+2t)=2(160°-2t)解得,t=26.

答:t为26秒.【点睛】本题考查的是角平分线的定义和角的计算,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线,解决本题的关键是理解动点运动情况.11.(1)120;(2),见解析;(3)见解析,或【分析】(1)根据角平分线的性质得到,再结合已知条件即可得出答案;(2)根据角平分线的性质与已知条件进行角之间的加减即可证明出结论;(3)根据角解析:(1)120;(2),见解析;(3)见解析,或【分析】(1)根据角平分线的性质得到,再结合已知条件即可得出答案;(2)根据角平分线的性质与已知条件进行角之间的加减即可证明出结论;(3)根据角平分线的性质结合已知条件进行角度之间的加减运算,分类讨论得出结论即可.【详解】解:(1)∵,,∴,∴,∵平分平分,∴,∴,∴,故答案为:120;(2).证明:∵平分,∴,∵,∴.∴.∵,∴.∵,∴,∴;(3)如图1,当在的左侧时,∵平分,∴,,∴,∵,,∴,∴,∴.∵为的平分线,∴.∴;如图2,当在的右侧时,∵平分,∴,∵,∴,∵,,∴,∴,∴.∵为的平分线,.综上所述,的度数为或.【点睛】本题主要考查了角平分线的性质与角度之间的加减运算,关键在于根据图形分析出各角之间的数量关系.12.(1)∠POQ=104°;(2)当∠POQ=40°时,t的值为10或20;(3)存在,t=12或或,使得∠POQ=∠AOQ.【分析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=解析:(1)∠POQ=104°;(2)当∠POQ=40°时,t的值为10或20;(3)存在,t=12或或,使得∠POQ=∠AOQ.【分析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=20;当OQ,OP第二次相遇时,t=30;(1)当t=2时,得到∠AOP=2t=4°,∠BOQ=6t=12°,利用∠POQ=∠AOB-∠AOP-∠BOQ求出结果即可;(2)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可;(3)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可.【详解】解:当OQ,OP第一次相遇时,2t+6t=120,t=15;当OQ刚到达OA时,6t=120,t=20;当OQ,OP第二次相遇时,2t6t=120+2t,t=30;(1)当t=2时,∠AOP=2t=4°,∠BOQ=6t=12°,∴∠POQ=∠AOB-∠AOP-∠BOQ=120°-4°-12°=104°.(2)当0≤t≤15时,2t+40+6t=120,t=10;当15<t≤20时,2t+6t=120+40,t=20;当20<t≤30时,2t=6t-120+40,t=20(舍去);答:当∠POQ=40°时,t的值为10或20.(3)当0≤t≤15时,120-8t=(120-6t),120-8t=60-3t,t=12;当15<t≤20时,2t–(120-6t)=(120-6t),t=.当20<t≤30时,2t–(6t-120)=(6t-120),t=.答:存在t=12或或,使得∠POQ=∠AOQ.【分析】本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程.13.(1)10秒;(2)5秒;(3)秒.【分析】(1)用角的度数除以转动速度即可得;(2)根据∠AOC=30°、OM恰好平分∠BOC知∠BOM=75°,进而可知旋转的度数,结合旋转速度可得时间t;解析:(1)10秒;(2)5秒;(3)秒.【分析】(1)用角的度数除以转动速度即可得;(2)根据∠AOC=30°、OM恰好平分∠BOC知∠BOM=75°,进而可知旋转的度数,结合旋转速度可得时间t;(3)分别根据转动速度关系和OC平分∠MOB画图即可.【详解】(1)∵30÷3=10,∴10秒后ON与OC重合;(2)∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC−∠CON=30°−15°=15°,解得:t=15°÷3°=5秒;(3)如图∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°−3t),∵∠BOM+∠AON=90°,可得:180°−(30°+6t)=(90°−3t),解得:t=秒.【点睛】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.14.(1)平分,理由见解析;(2),理由见解析;(3)或时,与互余.【分析】(1)根据平分线的定义可得,根据,可得,从而得到,所以可得结论;(2)设为,根据可得,根据可得,从而得到与之间的数量关系解析:(1)平分,理由见解析;(2),理由见解析;(3)或时,与互余.【分析】(1)根据平分线的定义可得,根据,可得,从而得到,所以可得结论;(2)设为,根据可得,根据可得,从而得到与之间的数量关系;(3)根据题意可知,因为,所以可得,可求出,根据“直线绕点O按每秒5°的速度逆时针旋转”可得出,,,,然后分情况进行讨论:①时,②时,③时,,从而得出结果.【详解】解:(1)平分,理由如下:∵且平分∴∵∴∴∴∴即平分(2),理由如下:设为,则∵∴∴即(3)∵且∴又∵∴∴∵直线绕点O按每秒5°的速度逆时针旋转∴①时,若与互余,则解得②时,若与互余,则此时无解③时,若与互余,则解得综上所述,或时,与互余.【点睛】本题考查了角的计算,角平分线有关的计算,余角相关计算.关键是认真审题并仔细观察图形,找到各个量之间的关系.15.(1)7;(2);(3)或.【分析】(1)根据是关于x的二次二项式可知,,求出a、b的值即为A、B对应的数,即可求出C点对应的数.(2)根据角平分线可知,.即可求出.再根据题意可知,,代入整理解析:(1)7;(2);(3)或.【分析】(1)根据是关于x的二次二项式可知,,求出a、b的值即为A、B对应的数,即可求出C点对应的数.(2)根据角平分线可知,.即可求出.再根据题意可知,,代入整理即可得到(3)根据题意可用t表示出和.再分类讨论当时和当时,列出的关于t的一元一次方程,解出t即可.【详解】(1)根据题意可得出,解得,即A、B对应的数分别为16、-2,∴C对应的数为.(2)∵CF平分∠ACD,CG平分∠BCE,∴,.∵,∴,即.∵,,∴,即.故存在数量关系,为:.(3)∵,,∴,即.∴.∵,∴.∴.当时,即,解得:且小于65,当时,即,解得:且小于65.综上可知或时符合题意.【点睛】本题考查多项式的性质,角平分线的定义,一元一次方程的应用,结合分类讨论以及数形结合的思想是解答本题的关键.16.(1);(2)或;(3)存在,或【分析】(1)设,,由列式求出t的值;(2)分情况讨论,射线OC与OD重合前,或射线OC与OD重合后,列式求出t的值;(3)分情况讨论,平分,或平分,或平分,解析:(1);(2)或;(3)存在,或【分析】(1)设,,由列式求出t的值;(2)分情况讨论,射线OC与OD重合前,或射线OC与OD重合后,列式求出t的值;(3)分情况讨论,平分,或平分,或平分,列式求出t的值.【详解】解:(1)设,,当射线OC与OD重合时,,即,解得,∴当时,射线OC与OD重合;(2)①射线OC与OD重合前,,即,解得;②射线OC与OD重合后,,即,解得,∴当或时,∠COD=90°;(3)①如图,平分,则,∴,即,解得;②如图,平分,则,∴,即,解得;③如图,OB平分,则,即,解得,∵,∴不成立,舍去;综上,或.【点睛】本题考查角度运动问题,解题的关键是用时间设出角度,根据题意列出方程求解的值.17.(1)①40;②画图见解析,95;③;(2)或12或30【分析】(1)①根据“共生三线”的定义直接计算;②分别画出OA,OB,再根据OC为∠AOB的平分线画出OC;③根据①②的经验直接可得结解析:(1)①40;②画图见解析,95;③;(2)或12或30【分析】(1)①根据“共生三线”的定义直接计算;②分别画出OA,OB,再根据OC为∠AOB的平分线画出OC;③根据①②的经验直接可得结论;(2)分OB′为∠A′OC′的平分线,OA′为∠B′OC′的平分线,OC′为∠A′OB′的平分线三种情况,列出方程求解.【详解】解:(1)①∵OA,OB,OC为“共生三线”,OC平分∠AOB,∴∠AOB=b°-a°=80°,∴m°=∠AOB=×80°=40°,故m=40;②如图,∵,,∴m=(a+b)÷2=95;③根据①②的经验可得:m=;(2)∵a=0,b=m=60,∴t秒后,a=12t,b=60+6t,m=60+8t,当OB′为∠A′OC′的平分线时,b=,即60+6t=(12t+60+8t),解得:t=;当OA′为∠B′OC′的平分线时,a=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论