版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Demystifying
MLPerf
Benchmark
SuiteMLPerf基准套件技术概述AgendaTarget
AudienceAbout
usMLPerf
introductionHowto
startTarget
AudienceAnyonewhohasinterestonDeepLearning
codingAnyonewhowanttohaveareferenceorbaselineforsystem
purchaseGPUCPU/MemoryFPGAand
othersCloudSolution
providersEX.Dell,publishingbenchmarkson
server/storageAnswering
RFPsAnyonewholiketocontributeinMLPerf
communityWorld-classinfrastructureintheInnovation
LabZenithTOP500-classsystembasedonIntelScalableSystemsFramework(OPA,KNL,Xeon,
OpenHPC)424nodesdualIntelXeonGoldprocessors,
Omni-Path
fabric.•+160IntelXeonPhi(KNL)
servers.Over1PFcombined
performance!#265onTop500June2018,1.86PFtheoretical
peakLustre,IsilonH600,IsilonF800andNSS
storageLiquidcooledandair
cooledRattlerResearch/developmentsystemwithMellanox,NVIDIAandBright
Computing88nodeswithEDRInfiniBandandIntelXeon
Goldprocessors32xPowerEdgeC4140nodeswith4xNVIDIA
GPUsOther
systems32nodeAMDcluster,storagesolutions,
etc.13Kft.2lab,1,300+servers,~10PBstoragededicatedtoHPCincollaborationwiththe
communityHPCandDLEngineering-whatwe
doDesignandbuildsystemsforHPC
andDeepLearning
workloads.Systemsincludecompute,
storage,network,software,services,
support.Integrationwithfactory,software,
services.Powerandperformanceanalysis,
tuning,bestpractices,
trade-offs.Focusonapplication
performance.Vertical
solutions.Researchandproofofconcept
studies.Publishwhitepapers,blogs,
conferencepapers
()Accesstothesystemsinthe
labMLPerf
introductionWhatisMLPerfA
open
sourced
ML
benchmark
suite
for
measuring
performance
of
ML
frameworks,
ML
hardwareaccelerators,andMLcloud
platforms.CoverdifferentDL
domainsPropermetrics(trainingtime,accuracy,
latency)Real
datasetsWhatisthegoalof
MLPerfFairandusefulbenchmarksformeasuringtrainingandinferenceperformanceofML
hardware,software,and
services.WhatisthetypesofMLPerf
runsSubmission–submitter
onlyRe-run–Anyonecan
runWhat’sincludedin
MLPerfTrainingand
InferenceMLPerf
introduction(cont.)4Categories:AvailableOn-premisePreviewRDI2
Divisions:Closed
:Intendedtocomparehardwareplatformsorsoftwareframeworks“apples-to-apples”andrequiresusingthesamemodelandoptimizerasthereference
implementationOpen:Intended
to
foster
faster
models
and
optimizers
and
allows
anyML
approach
that
can
reach
the
target
quality.2Benchmark
suites:DatacenterEdgeExample:
Inference->Available->closed->DC->DLRM->Offline->99%MLPerfTrainingAvailableOpenClosedOn-premiseOpenClosedPreviewOpenClosedRDIOpenClosedInferenceAvailableOpenClosedDatacenterRESNET50ServerOfflineDLRMServerOffline99%99.9%BERT99%99.9%SSD-RESNET343D-UNETRNN-TEdgeOn-premiseOpenClosePreviewOpenClosedRDIOpenClosedMLPerf
TrainingTheMLPerftrainingbenchmarksuitemeasureshowfastasystemcantrain
MLmodels.Latestversionis
v0.7More
details:/mlperf/training_policies/blob/master/training_rules.adocAreaBenchmarkDatasetQuality
TargetReferenceImplementationModelVisionImage
classificationImageNet75.90%classificationResNet-50
v1.5VisionObject
detection(light
weight)COCO23.0%
mAPSSDVisionObject
detection(heavy
weight)COCO0.377Boxmin
APand0.339Maskmin
APMaskR-CNNLanguageTranslation(recurrent)WMT
English-German24.0Sacre
BLEUNMTLanguageTranslation
(non-recurrent)WMT
English-German25.00
BLEUTransformerLanguageNLPWikipedia2020/01/010.712
Mask-LMaccuracyBERTCommerceRecommendation1TBClick
Logs0.8025
AUCDLRMResearchReinforcementlearningGo50%winrate
vs.checkpointMiniGo(based
onAlphaGo
paper)MLPerf
InferenceTheMLPerfinferencebenchmarkmeasureshowfastasystemcanperform
MLinferenceusingatrained
model.Latestversionis
v0.7Benchmark
suitesDatacenterServer/OfflineEdgeSingleStream/Multiple
streamMore
details:/mlperf/inference_policies/blob/master/inference_rules.adocAreaTaskModelDatasetQSL
SizeQualityServer
latencyconstraintVisionImageclassificationResnet50-v1.5ImageNet(224x224)102499%ofFP32(76.46%)15msVisionObject
detection(large)SSD-ResNet34COCO(1200x1200)6499%ofFP32(0.20
mAP)100msVisionMedical
imagesegmentation3D
UNETBraTS2019(224x224x160)1699%of
FP32and99.9%
ofFP32
(0.85300mean
DICEscore)N/ASpeechSpeech-to-textRNNTLibrispeechdev-clean(samples<
15seconds)251399%ofFP32
(1-WER,whereWER=7.452253714852645%)1000
msLanguageLanguageprocessingBERTSQuAD
v1.1(max_seq_len=384)1083399%ofFP32and99.9%ofFP32(f1_score=90.874%)130msCommerceRecommendationDLRM1TBClick
Logs20480099%of
FP32and99.9%ofFP32(AUC=80.25%)30
msStarting
pointJointheMLPerf
community(/get-involved/)Emaildistribution
listJointhe
forumJointheworking
groupWeekly
meetingsAttendcommunity
meetingsMLCommonsSuggestionsonrunthebenchmarkFor
re-run:
Use
final
code
from
specific
submitter,
not
the
reference
codeEx.
/mlperf/training_results_v0.7/tree/master/DellEMC/benchmarks/resnet/implementations/mxnetUsethereferencecodeonlyifyouare
submittingStepsfora
runPrepareHWanddriverGettheraw
datasetsPreprocessthedatasetsSetuprunning
environment–Docker
imagesRunrequiredtimesandparsing
resultsCompliancetestandsubmission
checkerEx./mlperf/training_results_v0.7/tree/master/NVIDIA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨境电商海外仓服务承诺协议2025年
- 2025 小学六年级语文上册近义词细微差别课件
- 考研培训合同2025年补充条款
- 2025年AI智能客服系统开发合同协议
- 居家养老陪护合同2025年服务标准
- 深度解析(2026)《GBT 39366-2020皮革 色牢度试验 耐摩擦色牢度》
- 乐山护理面试题及答案
- 微创护士面试题及答案
- 深度解析(2026)《GBT 34256-2017农产品购销基本信息描述 热带和亚热带水果类》
- 深度解析(2026)《GBT 34220-2017耐火材料 高温抗拉强度试验方法》
- DB 37T5061-2016 住宅小区供配电设施建设标准
- 六年级语文上册古诗和文言文默写
- 大学历史学《中国近现代史纲要》说课稿
- 2024年高考重点复习知识点之“抗日战争”
- GB/T 30306-2024家用和类似用途饮用水处理滤芯
- 察举制度变迁史稿
- JB T 2623-2006电机用电刷尺寸与结构型式
- 《责任》主题班会课件
- 北京市海淀区2022-2023学年五年级上学期期末测试语文试卷
- GB/T 12598-2023塑料离子交换树脂渗磨圆球率和磨后圆球率的测定
- 混凝土灌注桩试桩双套筒施工方案(分次吊装)
评论
0/150
提交评论