MLPerf基准套件技术概述_第1页
MLPerf基准套件技术概述_第2页
MLPerf基准套件技术概述_第3页
MLPerf基准套件技术概述_第4页
MLPerf基准套件技术概述_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Demystifying

MLPerf

Benchmark

SuiteMLPerf基准套件技术概述AgendaTarget

AudienceAbout

usMLPerf

introductionHowto

startTarget

AudienceAnyonewhohasinterestonDeepLearning

codingAnyonewhowanttohaveareferenceorbaselineforsystem

purchaseGPUCPU/MemoryFPGAand

othersCloudSolution

providersEX.Dell,publishingbenchmarkson

server/storageAnswering

RFPsAnyonewholiketocontributeinMLPerf

communityWorld-classinfrastructureintheInnovation

LabZenithTOP500-classsystembasedonIntelScalableSystemsFramework(OPA,KNL,Xeon,

OpenHPC)424nodesdualIntelXeonGoldprocessors,

Omni-Path

fabric.•+160IntelXeonPhi(KNL)

servers.Over1PFcombined

performance!#265onTop500June2018,1.86PFtheoretical

peakLustre,IsilonH600,IsilonF800andNSS

storageLiquidcooledandair

cooledRattlerResearch/developmentsystemwithMellanox,NVIDIAandBright

Computing88nodeswithEDRInfiniBandandIntelXeon

Goldprocessors32xPowerEdgeC4140nodeswith4xNVIDIA

GPUsOther

systems32nodeAMDcluster,storagesolutions,

etc.13Kft.2lab,1,300+servers,~10PBstoragededicatedtoHPCincollaborationwiththe

communityHPCandDLEngineering-whatwe

doDesignandbuildsystemsforHPC

andDeepLearning

workloads.Systemsincludecompute,

storage,network,software,services,

support.Integrationwithfactory,software,

services.Powerandperformanceanalysis,

tuning,bestpractices,

trade-offs.Focusonapplication

performance.Vertical

solutions.Researchandproofofconcept

studies.Publishwhitepapers,blogs,

conferencepapers

()Accesstothesystemsinthe

labMLPerf

introductionWhatisMLPerfA

open

sourced

ML

benchmark

suite

for

measuring

performance

of

ML

frameworks,

ML

hardwareaccelerators,andMLcloud

platforms.CoverdifferentDL

domainsPropermetrics(trainingtime,accuracy,

latency)Real

datasetsWhatisthegoalof

MLPerfFairandusefulbenchmarksformeasuringtrainingandinferenceperformanceofML

hardware,software,and

services.WhatisthetypesofMLPerf

runsSubmission–submitter

onlyRe-run–Anyonecan

runWhat’sincludedin

MLPerfTrainingand

InferenceMLPerf

introduction(cont.)4Categories:AvailableOn-premisePreviewRDI2

Divisions:Closed

:Intendedtocomparehardwareplatformsorsoftwareframeworks“apples-to-apples”andrequiresusingthesamemodelandoptimizerasthereference

implementationOpen:Intended

to

foster

faster

models

and

optimizers

and

allows

anyML

approach

that

can

reach

the

target

quality.2Benchmark

suites:DatacenterEdgeExample:

Inference->Available->closed->DC->DLRM->Offline->99%MLPerfTrainingAvailableOpenClosedOn-premiseOpenClosedPreviewOpenClosedRDIOpenClosedInferenceAvailableOpenClosedDatacenterRESNET50ServerOfflineDLRMServerOffline99%99.9%BERT99%99.9%SSD-RESNET343D-UNETRNN-TEdgeOn-premiseOpenClosePreviewOpenClosedRDIOpenClosedMLPerf

TrainingTheMLPerftrainingbenchmarksuitemeasureshowfastasystemcantrain

MLmodels.Latestversionis

v0.7More

details:/mlperf/training_policies/blob/master/training_rules.adocAreaBenchmarkDatasetQuality

TargetReferenceImplementationModelVisionImage

classificationImageNet75.90%classificationResNet-50

v1.5VisionObject

detection(light

weight)COCO23.0%

mAPSSDVisionObject

detection(heavy

weight)COCO0.377Boxmin

APand0.339Maskmin

APMaskR-CNNLanguageTranslation(recurrent)WMT

English-German24.0Sacre

BLEUNMTLanguageTranslation

(non-recurrent)WMT

English-German25.00

BLEUTransformerLanguageNLPWikipedia2020/01/010.712

Mask-LMaccuracyBERTCommerceRecommendation1TBClick

Logs0.8025

AUCDLRMResearchReinforcementlearningGo50%winrate

vs.checkpointMiniGo(based

onAlphaGo

paper)MLPerf

InferenceTheMLPerfinferencebenchmarkmeasureshowfastasystemcanperform

MLinferenceusingatrained

model.Latestversionis

v0.7Benchmark

suitesDatacenterServer/OfflineEdgeSingleStream/Multiple

streamMore

details:/mlperf/inference_policies/blob/master/inference_rules.adocAreaTaskModelDatasetQSL

SizeQualityServer

latencyconstraintVisionImageclassificationResnet50-v1.5ImageNet(224x224)102499%ofFP32(76.46%)15msVisionObject

detection(large)SSD-ResNet34COCO(1200x1200)6499%ofFP32(0.20

mAP)100msVisionMedical

imagesegmentation3D

UNETBraTS2019(224x224x160)1699%of

FP32and99.9%

ofFP32

(0.85300mean

DICEscore)N/ASpeechSpeech-to-textRNNTLibrispeechdev-clean(samples<

15seconds)251399%ofFP32

(1-WER,whereWER=7.452253714852645%)1000

msLanguageLanguageprocessingBERTSQuAD

v1.1(max_seq_len=384)1083399%ofFP32and99.9%ofFP32(f1_score=90.874%)130msCommerceRecommendationDLRM1TBClick

Logs20480099%of

FP32and99.9%ofFP32(AUC=80.25%)30

msStarting

pointJointheMLPerf

community(/get-involved/)Emaildistribution

listJointhe

forumJointheworking

groupWeekly

meetingsAttendcommunity

meetingsMLCommonsSuggestionsonrunthebenchmarkFor

re-run:

Use

final

code

from

specific

submitter,

not

the

reference

codeEx.

/mlperf/training_results_v0.7/tree/master/DellEMC/benchmarks/resnet/implementations/mxnetUsethereferencecodeonlyifyouare

submittingStepsfora

runPrepareHWanddriverGettheraw

datasetsPreprocessthedatasetsSetuprunning

environment–Docker

imagesRunrequiredtimesandparsing

resultsCompliancetestandsubmission

checkerEx./mlperf/training_results_v0.7/tree/master/NVIDIA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论