版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EmpoweringVision.DeliveringValue.
7AItrendsthatwilldefine2026
27AItrendsthatwilldefine2026
ByYaroslavMota
HeadofAIandEngineeringExcellenceatN-iX
IsyourbusinessreadyforAIin2026?
ArtificialIntelligence
isnolongerconfinedtothetestingphase;it'srapidlybecomingacornerstoneofbusinessoperationsacrossallindustries.Infact,companiesarenotjustexperimentingwithAIbutareembeddingitdeeplyintotheircorefunctions—
revolutionizingdecision-making,automatingprocesses,anddrivingefficiencies.
AccordingtoGartner,by2026,AIwillnolongerbea"nice-to-have"technologybutwillbecomestandardbusinesspractice,movingbeyondoptionalpilotprogramsandbecomingintegraltoeverydayoperations.
WithAIspendingexpectedtoreach$500billiongloballyby2024,
organizationsthatpreparenowarepositioningthemselvestocapturethebiggestopportunities.
ThosewhodelaywillriskfallingbehindascompetitorsharnessAItogainoperationalefficienciesandstrategicadvantages.Asweapproachthiscriticalinflectionpoint,it’sessentialtounderstandwhichAItrendswilldefinethebusinesslandscape.Here
arethesevenAItrendsthatwillmattermostin2026andbeyond.
Globalartificialintelligencesoftwaremarketrevenue
$150B
Revenue
$100B
$50B
$0B
20182019202020212022202320242024
37AItrendsthatwilldefine2026
Top7AItrendsfor2026
Infrastructurespendingshiftstoinference
CompaniesarerebuildingtheirdatacentersaroundAIinference(whentrained
AImodelsmakepredictionsanddecisionsforrealusers),ratherthantraining,
reflectingoneofthelatestAItrends.ThisshiftfromjusttrainingnewmodelsreflectshowAImovesintoeverydaybusinessoperations.Thenumbersmakethisclear:
GartnerprojectsAIinferenceserverspendingwillgrow42%annuallythrough2028,whiletrainingservergrowthremains24%.
Traininghappensonceorperiodicallywhenbuildingmodels.Inferencehappens
continuouslywhenthosemodelsserveusers,processtransactions,ormake
decisions.Thevolumedifferenceismassive—atrainedmodelmightrunmillionsofinferenceoperationsdaily.
Inferencingandservicing
Source:Gartner
ThediagramaboveillustratesthattheMachineLearningpipelineflowsfrom
initialdatapreparationthroughtrainingtomodeldeployment.However,thereal
businessvalueoccursinthefinal"inferencingandservicing"stage.Thisiswhere
deployedmodelscontinuouslyprocessliveenterprisedatatogeneratepredictions,recommendations,andautomateddecisionsthatdrivebusinessoperations.Whiletheearlierstagesofthepipeline,suchasdatacategorization,training,andmodel
creation,representone-timeorperiodicinvestments,theinferencephaseruns24/7,processingmillionsofrequestsandrequiringrobust,scalableinfrastructure.
Theinfrastructurerequirementsaredifferent,too.Inferenceneedslowlatency
andconsistentavailability.Trainingcanbebatchedanddelayed.Thisdrivesdemandforspecializedinferenceacceleratorsratherthanthemassiveparallelprocessing
systemsusedfortraining.
47AItrendsthatwilldefine2026
Powerconsumptioncreatesimmediateconstraints.AIinferenceworkloadsconsume30-100kilowattsperrackcomparedto7-10kilowattsfortraditionalservers.Most
datacentersweren'tbuiltforthisload.OrganizationsmustupgradepowerandcoolingsystemsorlimittheirAIdeployments.
Companiesaddressingpowerconstraintsnowavoidthesebottlenecks.
By2028,Gartnerestimatesthatover80%ofAIinfrastructurespendingwillsupportinferenceworkloads.
Organizationsthatplanforinference-focusedarchitecturetodaywilldeployAIfasterandatlowercostthanthoseretrofittinglater.
TheAIwindowisclosingfast.MostorganizationswillstrugglewithAIcostsandsecurityiftheygoitalone.Winnersdon'tjustdeploytechnology;theychoosepartnerswho'vealreadynavigatedthefinancialpitfallsandoperationalchaos.ChooseyourAIpartnerbasedontheirexperiencewiththemessyrealities,notjusttheirtechnicalcapabilities.
YaroslavMota
HeadofAIExcellenceatN-iX
57AItrendsthatwilldefine2026
2
FinOpspracticesevolvetohandleAIcomplexity
AIprojectbudgetsconsistentlymisstheirtargets,representingoneofthemostconcerningAIindustrytrendsaffectingorganizationstoday.
GartnerresearchrevealsthatgenerativeAIinitiativescanexperiencebudgetandcostestimateoverrunsofupto1000%.
Thisisn'tanoutlier;it'sbecomingthenormfororganizationsattemptingAIimplementationswithoutpropercostcontrols.
ThecostvariationsstemfromAI'smultifacetednature.Projectsinvolve
infrastructureandcloudresources,modelhostingandusagefees,dataworkloads,andapplicationdevelopment.ThedominantmethodofusingGenAImodelsis
throughcloudproviders.Theseservicesusepricingbasedonparametersthataredifficulttoestimate,suchasinputandoutputtokens.Asmodelsareupdatedandoptimized,unitcostschangefrequently,addinguncertaintytobudgetplanning.
TraditionalITcostmanagementfallsshortbecauseitwasn'tdesignedfor
consumption-basedAIservices.MostorganizationslackvisibilityintoAIspendingpatternsortoolstopredictcostsaccurately.
Thefinancialimpactisforcingchange.By2027,Gartnerpredictsthat60%
oflargeenterpriseswilladoptandapply
FinOps
practicesfortheirAIinitiatives.Thisrepresentsashiftfromreactivecostmanagementtoproactivefinancial
governanceforAIprojects.
The2025GartnerCIOandTechnologyExecutiveSurveyfoundthat
57%ofrespondentsattachhighimportancetohelpingbusinessareasunderstandthefulllifecyclecostsoftheirtechnologyinvestments.
However,the2023GartnerFinancialGovernanceandSustainabilitySurveyrevealedthat69%oforganizationswithfinancialgovernanceprogramsaren'tusingtools
tooptimizecapabilities,and79%aren'tusingtoolsforcostprediction.
OrganizationsimplementingAI-specificFinOpspracticesearlyreportbetter
budgetaccuracyandloweroverallcoststhanthoseusingtraditionalITfinancialmanagementapproaches.
67AItrendsthatwilldefine2026
AgenticAItransformsbusinessoperations
OrganizationsarerapidlyadoptingAI
agentsthatcanmakedecisionsandtakeactionsautonomously,makingthisoneofthetopAItrendstransforming
enterpriseoperations.
Gartnerpredictsthatby2028,33%ofenterprisesoftwarewillinclude
agenticAI
.
AgenticAIreferstogoal-driven
softwareentitiesauthorizedby
organizationstomakedecisionsandactsemiautonomouslyorautonomously
ontheirbehalf.Unlikeroboticprocess
automation,agenticAIdoesn'trequire
explicitinputsorproducepredeterminedoutputs.Theseentitiescanreceivegoalinstructions,iterateontasks,delegate
work,andmakevariableoutputswhileaugmentinghumanwork.
Thebusinesscaseiscompelling.
By2030,AIagentswillautonomouslymake15%ofday-to-daysupplychaindecisions,freeinghumanstofocusoncriticaldecisions.
Incustomerservice,AIagentshandlecomplexworkflowsthatpreviouslyrequiredhumanintervention.Furthermore,AIwillhold67%ofB2Bprocurementby2030,requiringcompaniestostructuretheirofferingsasmachine-readabledatainsteadofrelyingontraditionalmarketingnarratives.
AgenticAIsystemsusememory,planning,sensing,tooling,andguardrailsto
completetasksandachieveobjectives.Theycanworkcollaborativelyinmulti-agentsystemstosolvecomplexproblemsbeyondindividualagentcapabilities,making
themparticularlyvaluableformanufacturing,logistics,andfinancialservices.
OrganizationsimplementingagenticAIreportimprovedautomationinareaslikeprocurement,where40%ofprocurementteamsareexpectedtohaveatleastoneAIagentby2028.
77AItrendsthatwilldefine2026N-i
AIevaluationstandardsareemerging
OrganizationsneedconsistentwaystoevaluateAIsystemsacrossvendorsandusecases,reflectingoneofthelatesttrendsinAItechnologytowardstandardizationandaccountability.
In2026,aMachineIntelligenceQuotient(MIQ)willbecomethestandardcomparisontoolforAIsolutions.
Thiscompositescoringsystemwillcombineaccuracy,efficiency,explainability,speed,andcompliancemetricsintoasinglescore,replacingthecurrentmixofnarrowbenchmarksthatvarybyvendorandmakecomparisonsdifficult.
ThedemandforstandardizedAIevaluationhasgrownasorganizationsadoptAI
technologiesacrossmultiplebusinessfunctions.CurrentevaluationmethodsfocusprimarilyonlanguageunderstandingthroughbenchmarkslikeGLUE,SQuAD,
andRACE,butthesedon'tcapturethefullrangeofcapabilitiesneededforbusinessapplications.TheMIQframeworkwillbemorecomprehensive,incorporatingmetricssuchasreasoningability,ethicalcompliance,andadaptabilityalongsidetraditionalperformancemeasures.
EarlyversionsofMIQ-styleevaluationarealreadyappearinginregulatedindustries.HealthcareorganizationsevaluateAIdiagnostictoolsbasedonaccuracyand
explainabilityrequirementsforregulatorycompliance.FinancialservicesassessAImodelsonprocessingspeedplusadherencetoregulatorystandards.Theseindustry-specificapproachesareevolvingtowardcross-industrystandardsthatenableconsistentcomparisonofAIofferings.
VendorsmustoptimizeAIsolutionstoperformwellonMIQevaluationstoremain
competitive.OrganizationswillprioritizeAIsolutionswithhighMIQscoreswhen
makinginvestmentdecisions,andenterpriseclientswilluseMIQleaderboardrankingsasstartingpointsbeforerunningtheirownevaluationsforspecificusecases.
Thestandardizationextendsbeyondvendorselection.RegulatorsandstandardizationbodiesareexpectedtoadoptMIQaspartofcomplianceframeworksforAI
deployment,makingitakeycriterionforsolutionapproval.CIOsreportthatvendorswithclear,standardizedperformancemetricsareeasiertoevaluateandreceive
approvalfasterthanthoseusingproprietaryorinconsistentevaluationmethods.
87AItrendsthatwilldefine2026
AIenablesultra-leanteamoperations
AIenablessmallerteamstoachieveresultsthatpreviouslyrequiredmuchlargerorganizations,representingoneofthemosttransformativeAItechnologytrendsreshapingbusinesseconomics.
AI-nativecompaniesgenerate$1.35Minannualrevenueperemployee,comparedto$107Kfortraditionalsoftwarecompanies—amorethan10xdifferenceinproductivity.
ThisefficiencygainreflectshowAIcanautomateworkactivitiesthattraditionallyconsume60-70%ofemployees'time.
Thenumbersdemonstrateaclearshiftinbusinesseconomics.
In2020,reaching$30Min
annualrecurringrevenuemeantbuildinga250-personcompany.
In2025,AI-nativebusinessesare
achievingthesamemilestonewith
justthreepeople.Thesecompanies
useAIformarketresearch,customersupport,contentcreation,andproductdevelopment,allowinghumansto
focusonstrategy,oversight,andtasksrequiringcreativityorjudgment.
By2030,somebillion-dollar
companieswilloperatewithteamsofjust3-20people.Thirty-sixout
of84newlyvaluedbillion-dollar
unicornsin2024areAI-native
companies,withthetop30startupsaveraging40xrevenuemultiple
valuations.Theseorganizationsshowcaseextraordinarilyefficientgrowthrates,averaging$27.5MinARRwithinfouryears.
97AItrendsthatwilldefine2026
TheproductivitygainscomefromhybridteamsthatcombinehumanworkerswithagenticAIsystems.
Someteamsreporta2.4xincreaseinproductivitywhenusingAI-augmentedworkflows.
Withover76%ofastartup'soperatingcostsgoingtoheadcount,leanAI-nativeteamscanreducethisexpenseandreallocateresourcestorevenue-generatinginvestments.
Capital-efficientstartupsusingthismodelcuttheirburnrateandachievestrategicmilestonesmorequickly,enablingoperationsthatshortenthepathtopositive
cashflow.Thisreducesinvestorriskandincreasesthelikelihoodofearlier,higher-valuationexits.
AIleadersinvest10%and50%oftheirtechnologyspendingintoAIinitiativesandreinvestsavingsintonewopportunities.
TraditionalcompanieswithlargeworkforceswillneedtoadoptAI-augmentedprocessestoremaincompetitiveagainstthesenimble,efficientteamsthatcaniterateandscalewithoutaddingheadcount.
AIengineersreplacedatascientists
ThejobmarketforAIprofessionalsisshiftingtowardproduction-focusedroles,reflectingbroadertrendsinAIadoptionandimplementationstrategies.
By2027,therewillbethreetimesmore
AIengineer
positionsthandatascientistrolesasorganizationsmovefrombuildingcustomMachine
Learningmodelstodeployingandoptimizingpre-trainedAIsystems.
ThisshiftreflectshoworganizationsactuallyuseAItechnology.Therise
ofgenerativeAIhasmovedthefocusfromdevelopmenttoproductionvalidationofAIapplications.AIengineersensureproductionreadinessandmaintain
continuousfeedbackloopsacrossexperimentation,development,testing,and
deploymentphases.Meanwhile,theextensivepretrainingofgenerativeAImodelsreducestheneedforbuildingcustomMachineLearningapplicationsfromscratch.
LinkedIn's"2025JobsontheRise"listshowsAIengineerasthefastest-growingjobtitlein15countries,rankingnumberoneintheUS,theUK,andtheNetherlands.
107AItrendsthatwilldefine2026
TheGartnerSoftwareEngineeringSurveyfor2025foundthattheAIengineerwasthesecondmostin-demandrole,with57%ofleadersplanningtohireorincreasehiring.
TherolerequiresskillsdifferentfromthoseoftraditionalDataScience.Insteadofstatisticalmodelingandalgorithmdevelopment,AIengineersfocusonmodelselection,rigorousevaluation,buildingpromptlibrariesandretrieval-augmentedgenerationpipelines,ensuringmodelobservability,andmitigatingAIrisks.
Thisrepresentsashiftfromcustommodelcreationtosystemintegrationandoptimization.
TherewillbesubspecialtieswithinAIengineering.Datascientistswithsoftware
engineeringskillsarewell-positionedforspecificAIengineerroleslikeevaluationdesign,modelselection,andfine-tuning.Softwareengineerscantransitioninto
promptdevelopment,applicationorchestration,anduserexperiencedesign
forAIsystems.Dataengineersfitnaturallyintodevelopingcomplexdatapipelinesforunstructureddataprocessing.
Giventhetalentshortageandspecializedskillsrequired,manyorganizationswillneedtopartnerwithreliabletechnologyprovidersthatcansupplyexperiencedAIengineersanddevelopmentteams.ThesepartnershipsbecomeessentialforcompaniesthatlacktheinternalresourcestobuildAIcapabilitiesquicklyenoughtoremaincompetitive.
117AItrendsthatwilldefine2026N-i
MultimodalAIbecomesthe
7
standardinterface
ArtificialIntelligenceismovingbeyondtext-onlyinteractionstoprocessmultiple
datatypessimultaneously,representingoneofthelatesttrendsofAIthat'schanginghuman-computerinteraction.MultimodalAImodelscanunderstandandgeneratecontentacrosstext,images,audio,andvideowithinasinglesystem,representing
asignificantshiftinhowhumansinteractwithAItechnology.Multimodalmodelreleasesincreasedby1,150%overtwoyears.
Thebusinessapplicationsareimmediateandpractical.Fieldengineerscan
photographmalfunctioningequipmentandreceivespokendiagnosticinstructions.ClinicianscanattachX-raystonotesandgetstructuredreportdrafts.Analysts
cancombinecharts,transcripts,andaudioclipsinasinglequery.ThiseliminatesswitchingbetweendifferentAItoolsfordifferentcontenttypes.
Consumeradoptionreflectsthisutility.
By2028,80%ofdigitalworkerswillusemultimodalinterfaceswithAI,significantlyimprovingtaskefficiencyandworkplaceaccessibility.
UsersnolongerneedtodescribevisualproblemsintextwhentheycansimplyshowthemtotheAIsystem.
TheinfrastructuresupportingmultimodalAIisscalingrapidly.Large-scale
multimodalmodelreleasesgrewfrom2in2022to25in2024.Asaresult,major
technologycompaniesareinvestingheavilyinsystemsthatsimultaneouslyprocessdiversedatatypes.
Multimodalcapabilitiesreducefrictioninhuman-AIinteractionbyallowingpeople
tocommunicatenaturallyusingwhatevercombinationoftext,voice,images,orvideobestconveysthei
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 康复数据记录对方案调整的指导意义
- 干细胞基因治疗产品安全性评价方法
- 荆职院护理学基础课件10舒适
- 河中院《护理学基础》医疗与护理文件书写教学课件
- 妇产科护理难点解析与应对
- 医疗护理管理与领导力提升策略研究与实践
- 医疗机构消毒与清洁操作
- 居家个体化肺康复方案
- 妇产科业务发展分析汇报
- 医疗机器人技术发展
- 垃圾分类与处理专员面试题集
- 往来核算岗位实训
- 2025年医保政策知识培训考试试题库及答案
- 雨课堂学堂在线学堂云军事理论国防大学单元测试考核答案
- 2025中原农业保险股份有限公司招聘67人笔试考试备考试题及答案解析
- 仓库-拆除施工方案(3篇)
- 防拐卖安全教育课件文库
- 美学概论论文
- 广东省珠海市文园中学教育集团2025-2026学年九年级上学期期中语文试题(含答案及解析)
- 2025年6月浙江省高考历史试卷真题(含答案解析)
- 【MOOC】《国际商务》(暨南大学)期末考试慕课答案
评论
0/150
提交评论