2026年塑造未来格局的七大AI趋势研究报告 7 AI trends that will define 2026_第1页
2026年塑造未来格局的七大AI趋势研究报告 7 AI trends that will define 2026_第2页
2026年塑造未来格局的七大AI趋势研究报告 7 AI trends that will define 2026_第3页
2026年塑造未来格局的七大AI趋势研究报告 7 AI trends that will define 2026_第4页
2026年塑造未来格局的七大AI趋势研究报告 7 AI trends that will define 2026_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

EmpoweringVision.DeliveringValue.

7AItrendsthatwilldefine2026

27AItrendsthatwilldefine2026

ByYaroslavMota

HeadofAIandEngineeringExcellenceatN-iX

IsyourbusinessreadyforAIin2026?

ArtificialIntelligence

isnolongerconfinedtothetestingphase;it'srapidlybecomingacornerstoneofbusinessoperationsacrossallindustries.Infact,companiesarenotjustexperimentingwithAIbutareembeddingitdeeplyintotheircorefunctions—

revolutionizingdecision-making,automatingprocesses,anddrivingefficiencies.

AccordingtoGartner,by2026,AIwillnolongerbea"nice-to-have"technologybutwillbecomestandardbusinesspractice,movingbeyondoptionalpilotprogramsandbecomingintegraltoeverydayoperations.

WithAIspendingexpectedtoreach$500billiongloballyby2024,

organizationsthatpreparenowarepositioningthemselvestocapturethebiggestopportunities.

ThosewhodelaywillriskfallingbehindascompetitorsharnessAItogainoperationalefficienciesandstrategicadvantages.Asweapproachthiscriticalinflectionpoint,it’sessentialtounderstandwhichAItrendswilldefinethebusinesslandscape.Here

arethesevenAItrendsthatwillmattermostin2026andbeyond.

Globalartificialintelligencesoftwaremarketrevenue

$150B

Revenue

$100B

$50B

$0B

20182019202020212022202320242024

37AItrendsthatwilldefine2026

Top7AItrendsfor2026

Infrastructurespendingshiftstoinference

CompaniesarerebuildingtheirdatacentersaroundAIinference(whentrained

AImodelsmakepredictionsanddecisionsforrealusers),ratherthantraining,

reflectingoneofthelatestAItrends.ThisshiftfromjusttrainingnewmodelsreflectshowAImovesintoeverydaybusinessoperations.Thenumbersmakethisclear:

GartnerprojectsAIinferenceserverspendingwillgrow42%annuallythrough2028,whiletrainingservergrowthremains24%.

Traininghappensonceorperiodicallywhenbuildingmodels.Inferencehappens

continuouslywhenthosemodelsserveusers,processtransactions,ormake

decisions.Thevolumedifferenceismassive—atrainedmodelmightrunmillionsofinferenceoperationsdaily.

Inferencingandservicing

Source:Gartner

ThediagramaboveillustratesthattheMachineLearningpipelineflowsfrom

initialdatapreparationthroughtrainingtomodeldeployment.However,thereal

businessvalueoccursinthefinal"inferencingandservicing"stage.Thisiswhere

deployedmodelscontinuouslyprocessliveenterprisedatatogeneratepredictions,recommendations,andautomateddecisionsthatdrivebusinessoperations.Whiletheearlierstagesofthepipeline,suchasdatacategorization,training,andmodel

creation,representone-timeorperiodicinvestments,theinferencephaseruns24/7,processingmillionsofrequestsandrequiringrobust,scalableinfrastructure.

Theinfrastructurerequirementsaredifferent,too.Inferenceneedslowlatency

andconsistentavailability.Trainingcanbebatchedanddelayed.Thisdrivesdemandforspecializedinferenceacceleratorsratherthanthemassiveparallelprocessing

systemsusedfortraining.

47AItrendsthatwilldefine2026

Powerconsumptioncreatesimmediateconstraints.AIinferenceworkloadsconsume30-100kilowattsperrackcomparedto7-10kilowattsfortraditionalservers.Most

datacentersweren'tbuiltforthisload.OrganizationsmustupgradepowerandcoolingsystemsorlimittheirAIdeployments.

Companiesaddressingpowerconstraintsnowavoidthesebottlenecks.

By2028,Gartnerestimatesthatover80%ofAIinfrastructurespendingwillsupportinferenceworkloads.

Organizationsthatplanforinference-focusedarchitecturetodaywilldeployAIfasterandatlowercostthanthoseretrofittinglater.

TheAIwindowisclosingfast.MostorganizationswillstrugglewithAIcostsandsecurityiftheygoitalone.Winnersdon'tjustdeploytechnology;theychoosepartnerswho'vealreadynavigatedthefinancialpitfallsandoperationalchaos.ChooseyourAIpartnerbasedontheirexperiencewiththemessyrealities,notjusttheirtechnicalcapabilities.

YaroslavMota

HeadofAIExcellenceatN-iX

57AItrendsthatwilldefine2026

2

FinOpspracticesevolvetohandleAIcomplexity

AIprojectbudgetsconsistentlymisstheirtargets,representingoneofthemostconcerningAIindustrytrendsaffectingorganizationstoday.

GartnerresearchrevealsthatgenerativeAIinitiativescanexperiencebudgetandcostestimateoverrunsofupto1000%.

Thisisn'tanoutlier;it'sbecomingthenormfororganizationsattemptingAIimplementationswithoutpropercostcontrols.

ThecostvariationsstemfromAI'smultifacetednature.Projectsinvolve

infrastructureandcloudresources,modelhostingandusagefees,dataworkloads,andapplicationdevelopment.ThedominantmethodofusingGenAImodelsis

throughcloudproviders.Theseservicesusepricingbasedonparametersthataredifficulttoestimate,suchasinputandoutputtokens.Asmodelsareupdatedandoptimized,unitcostschangefrequently,addinguncertaintytobudgetplanning.

TraditionalITcostmanagementfallsshortbecauseitwasn'tdesignedfor

consumption-basedAIservices.MostorganizationslackvisibilityintoAIspendingpatternsortoolstopredictcostsaccurately.

Thefinancialimpactisforcingchange.By2027,Gartnerpredictsthat60%

oflargeenterpriseswilladoptandapply

FinOps

practicesfortheirAIinitiatives.Thisrepresentsashiftfromreactivecostmanagementtoproactivefinancial

governanceforAIprojects.

The2025GartnerCIOandTechnologyExecutiveSurveyfoundthat

57%ofrespondentsattachhighimportancetohelpingbusinessareasunderstandthefulllifecyclecostsoftheirtechnologyinvestments.

However,the2023GartnerFinancialGovernanceandSustainabilitySurveyrevealedthat69%oforganizationswithfinancialgovernanceprogramsaren'tusingtools

tooptimizecapabilities,and79%aren'tusingtoolsforcostprediction.

OrganizationsimplementingAI-specificFinOpspracticesearlyreportbetter

budgetaccuracyandloweroverallcoststhanthoseusingtraditionalITfinancialmanagementapproaches.

67AItrendsthatwilldefine2026

AgenticAItransformsbusinessoperations

OrganizationsarerapidlyadoptingAI

agentsthatcanmakedecisionsandtakeactionsautonomously,makingthisoneofthetopAItrendstransforming

enterpriseoperations.

Gartnerpredictsthatby2028,33%ofenterprisesoftwarewillinclude

agenticAI

.

AgenticAIreferstogoal-driven

softwareentitiesauthorizedby

organizationstomakedecisionsandactsemiautonomouslyorautonomously

ontheirbehalf.Unlikeroboticprocess

automation,agenticAIdoesn'trequire

explicitinputsorproducepredeterminedoutputs.Theseentitiescanreceivegoalinstructions,iterateontasks,delegate

work,andmakevariableoutputswhileaugmentinghumanwork.

Thebusinesscaseiscompelling.

By2030,AIagentswillautonomouslymake15%ofday-to-daysupplychaindecisions,freeinghumanstofocusoncriticaldecisions.

Incustomerservice,AIagentshandlecomplexworkflowsthatpreviouslyrequiredhumanintervention.Furthermore,AIwillhold67%ofB2Bprocurementby2030,requiringcompaniestostructuretheirofferingsasmachine-readabledatainsteadofrelyingontraditionalmarketingnarratives.

AgenticAIsystemsusememory,planning,sensing,tooling,andguardrailsto

completetasksandachieveobjectives.Theycanworkcollaborativelyinmulti-agentsystemstosolvecomplexproblemsbeyondindividualagentcapabilities,making

themparticularlyvaluableformanufacturing,logistics,andfinancialservices.

OrganizationsimplementingagenticAIreportimprovedautomationinareaslikeprocurement,where40%ofprocurementteamsareexpectedtohaveatleastoneAIagentby2028.

77AItrendsthatwilldefine2026N-i

AIevaluationstandardsareemerging

OrganizationsneedconsistentwaystoevaluateAIsystemsacrossvendorsandusecases,reflectingoneofthelatesttrendsinAItechnologytowardstandardizationandaccountability.

In2026,aMachineIntelligenceQuotient(MIQ)willbecomethestandardcomparisontoolforAIsolutions.

Thiscompositescoringsystemwillcombineaccuracy,efficiency,explainability,speed,andcompliancemetricsintoasinglescore,replacingthecurrentmixofnarrowbenchmarksthatvarybyvendorandmakecomparisonsdifficult.

ThedemandforstandardizedAIevaluationhasgrownasorganizationsadoptAI

technologiesacrossmultiplebusinessfunctions.CurrentevaluationmethodsfocusprimarilyonlanguageunderstandingthroughbenchmarkslikeGLUE,SQuAD,

andRACE,butthesedon'tcapturethefullrangeofcapabilitiesneededforbusinessapplications.TheMIQframeworkwillbemorecomprehensive,incorporatingmetricssuchasreasoningability,ethicalcompliance,andadaptabilityalongsidetraditionalperformancemeasures.

EarlyversionsofMIQ-styleevaluationarealreadyappearinginregulatedindustries.HealthcareorganizationsevaluateAIdiagnostictoolsbasedonaccuracyand

explainabilityrequirementsforregulatorycompliance.FinancialservicesassessAImodelsonprocessingspeedplusadherencetoregulatorystandards.Theseindustry-specificapproachesareevolvingtowardcross-industrystandardsthatenableconsistentcomparisonofAIofferings.

VendorsmustoptimizeAIsolutionstoperformwellonMIQevaluationstoremain

competitive.OrganizationswillprioritizeAIsolutionswithhighMIQscoreswhen

makinginvestmentdecisions,andenterpriseclientswilluseMIQleaderboardrankingsasstartingpointsbeforerunningtheirownevaluationsforspecificusecases.

Thestandardizationextendsbeyondvendorselection.RegulatorsandstandardizationbodiesareexpectedtoadoptMIQaspartofcomplianceframeworksforAI

deployment,makingitakeycriterionforsolutionapproval.CIOsreportthatvendorswithclear,standardizedperformancemetricsareeasiertoevaluateandreceive

approvalfasterthanthoseusingproprietaryorinconsistentevaluationmethods.

87AItrendsthatwilldefine2026

AIenablesultra-leanteamoperations

AIenablessmallerteamstoachieveresultsthatpreviouslyrequiredmuchlargerorganizations,representingoneofthemosttransformativeAItechnologytrendsreshapingbusinesseconomics.

AI-nativecompaniesgenerate$1.35Minannualrevenueperemployee,comparedto$107Kfortraditionalsoftwarecompanies—amorethan10xdifferenceinproductivity.

ThisefficiencygainreflectshowAIcanautomateworkactivitiesthattraditionallyconsume60-70%ofemployees'time.

Thenumbersdemonstrateaclearshiftinbusinesseconomics.

In2020,reaching$30Min

annualrecurringrevenuemeantbuildinga250-personcompany.

In2025,AI-nativebusinessesare

achievingthesamemilestonewith

justthreepeople.Thesecompanies

useAIformarketresearch,customersupport,contentcreation,andproductdevelopment,allowinghumansto

focusonstrategy,oversight,andtasksrequiringcreativityorjudgment.

By2030,somebillion-dollar

companieswilloperatewithteamsofjust3-20people.Thirty-sixout

of84newlyvaluedbillion-dollar

unicornsin2024areAI-native

companies,withthetop30startupsaveraging40xrevenuemultiple

valuations.Theseorganizationsshowcaseextraordinarilyefficientgrowthrates,averaging$27.5MinARRwithinfouryears.

97AItrendsthatwilldefine2026

TheproductivitygainscomefromhybridteamsthatcombinehumanworkerswithagenticAIsystems.

Someteamsreporta2.4xincreaseinproductivitywhenusingAI-augmentedworkflows.

Withover76%ofastartup'soperatingcostsgoingtoheadcount,leanAI-nativeteamscanreducethisexpenseandreallocateresourcestorevenue-generatinginvestments.

Capital-efficientstartupsusingthismodelcuttheirburnrateandachievestrategicmilestonesmorequickly,enablingoperationsthatshortenthepathtopositive

cashflow.Thisreducesinvestorriskandincreasesthelikelihoodofearlier,higher-valuationexits.

AIleadersinvest10%and50%oftheirtechnologyspendingintoAIinitiativesandreinvestsavingsintonewopportunities.

TraditionalcompanieswithlargeworkforceswillneedtoadoptAI-augmentedprocessestoremaincompetitiveagainstthesenimble,efficientteamsthatcaniterateandscalewithoutaddingheadcount.

AIengineersreplacedatascientists

ThejobmarketforAIprofessionalsisshiftingtowardproduction-focusedroles,reflectingbroadertrendsinAIadoptionandimplementationstrategies.

By2027,therewillbethreetimesmore

AIengineer

positionsthandatascientistrolesasorganizationsmovefrombuildingcustomMachine

Learningmodelstodeployingandoptimizingpre-trainedAIsystems.

ThisshiftreflectshoworganizationsactuallyuseAItechnology.Therise

ofgenerativeAIhasmovedthefocusfromdevelopmenttoproductionvalidationofAIapplications.AIengineersensureproductionreadinessandmaintain

continuousfeedbackloopsacrossexperimentation,development,testing,and

deploymentphases.Meanwhile,theextensivepretrainingofgenerativeAImodelsreducestheneedforbuildingcustomMachineLearningapplicationsfromscratch.

LinkedIn's"2025JobsontheRise"listshowsAIengineerasthefastest-growingjobtitlein15countries,rankingnumberoneintheUS,theUK,andtheNetherlands.

107AItrendsthatwilldefine2026

TheGartnerSoftwareEngineeringSurveyfor2025foundthattheAIengineerwasthesecondmostin-demandrole,with57%ofleadersplanningtohireorincreasehiring.

TherolerequiresskillsdifferentfromthoseoftraditionalDataScience.Insteadofstatisticalmodelingandalgorithmdevelopment,AIengineersfocusonmodelselection,rigorousevaluation,buildingpromptlibrariesandretrieval-augmentedgenerationpipelines,ensuringmodelobservability,andmitigatingAIrisks.

Thisrepresentsashiftfromcustommodelcreationtosystemintegrationandoptimization.

TherewillbesubspecialtieswithinAIengineering.Datascientistswithsoftware

engineeringskillsarewell-positionedforspecificAIengineerroleslikeevaluationdesign,modelselection,andfine-tuning.Softwareengineerscantransitioninto

promptdevelopment,applicationorchestration,anduserexperiencedesign

forAIsystems.Dataengineersfitnaturallyintodevelopingcomplexdatapipelinesforunstructureddataprocessing.

Giventhetalentshortageandspecializedskillsrequired,manyorganizationswillneedtopartnerwithreliabletechnologyprovidersthatcansupplyexperiencedAIengineersanddevelopmentteams.ThesepartnershipsbecomeessentialforcompaniesthatlacktheinternalresourcestobuildAIcapabilitiesquicklyenoughtoremaincompetitive.

117AItrendsthatwilldefine2026N-i

MultimodalAIbecomesthe

7

standardinterface

ArtificialIntelligenceismovingbeyondtext-onlyinteractionstoprocessmultiple

datatypessimultaneously,representingoneofthelatesttrendsofAIthat'schanginghuman-computerinteraction.MultimodalAImodelscanunderstandandgeneratecontentacrosstext,images,audio,andvideowithinasinglesystem,representing

asignificantshiftinhowhumansinteractwithAItechnology.Multimodalmodelreleasesincreasedby1,150%overtwoyears.

Thebusinessapplicationsareimmediateandpractical.Fieldengineerscan

photographmalfunctioningequipmentandreceivespokendiagnosticinstructions.ClinicianscanattachX-raystonotesandgetstructuredreportdrafts.Analysts

cancombinecharts,transcripts,andaudioclipsinasinglequery.ThiseliminatesswitchingbetweendifferentAItoolsfordifferentcontenttypes.

Consumeradoptionreflectsthisutility.

By2028,80%ofdigitalworkerswillusemultimodalinterfaceswithAI,significantlyimprovingtaskefficiencyandworkplaceaccessibility.

UsersnolongerneedtodescribevisualproblemsintextwhentheycansimplyshowthemtotheAIsystem.

TheinfrastructuresupportingmultimodalAIisscalingrapidly.Large-scale

multimodalmodelreleasesgrewfrom2in2022to25in2024.Asaresult,major

technologycompaniesareinvestingheavilyinsystemsthatsimultaneouslyprocessdiversedatatypes.

Multimodalcapabilitiesreducefrictioninhuman-AIinteractionbyallowingpeople

tocommunicatenaturallyusingwhatevercombinationoftext,voice,images,orvideobestconveysthei

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论