福建省漳州市五中、龙海市五中等四校2026届高三数学第一学期期末学业水平测试模拟试题含解析_第1页
福建省漳州市五中、龙海市五中等四校2026届高三数学第一学期期末学业水平测试模拟试题含解析_第2页
福建省漳州市五中、龙海市五中等四校2026届高三数学第一学期期末学业水平测试模拟试题含解析_第3页
福建省漳州市五中、龙海市五中等四校2026届高三数学第一学期期末学业水平测试模拟试题含解析_第4页
福建省漳州市五中、龙海市五中等四校2026届高三数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省漳州市五中、龙海市五中等四校2026届高三数学第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.总体由编号01,,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为7816

6572

0802

6314

0702

4369

9728

0198

3204

9234

4935

8200

3623

4869

6938

7481

A.08 B.07 C.02 D.012.将函数的图象沿轴向左平移个单位长度后,得到函数的图象,则“”是“是偶函数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为()A. B. C. D.4.已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为()A. B. C. D.5.函数在上的最大值和最小值分别为()A.,-2 B.,-9 C.-2,-9 D.2,-26.已知α,β是两平面,l,m,n是三条不同的直线,则不正确命题是()A.若m⊥α,n//α,则m⊥n B.若m//α,n//α,则m//nC.若l⊥α,l//β,则α⊥β D.若α//β,lβ,且l//α,则l//β7.已知复数满足,则()A. B. C. D.8.如图所示,网格纸上小正方形的边长为,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为()A. B. C. D.9.设为非零实数,且,则()A. B. C. D.10.在复平面内,复数(,)对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,,则,由棣莫弗定理可以导出复数乘方公式:,已知,则()A. B.4 C. D.1611.设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是()A. B.C. D.12.椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是定义在上的奇函数,当时,,则不等式的解集用区间表示为__________.14.已知定义在上的函数的图象关于点对称,,若函数图象与函数图象的交点为,则_____.15.已知双曲线:(,),直线:与双曲线的两条渐近线分别交于,两点.若(点为坐标原点)的面积为32,且双曲线的焦距为,则双曲线的离心率为________.16.在回归分析的问题中,我们可以通过对数变换把非线性回归方程,()转化为线性回归方程,即两边取对数,令,得到.受其启发,可求得函数()的值域是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度.现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶.若幸福度不低于8.5分,则称该人的幸福度为“很幸福”.(Ⅰ)求从这18人中随机选取3人,至少有1人是“很幸福”的概率;(Ⅱ)以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“很幸福”的人数,求的分布列及.18.(12分)如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明::(2)求直线与平面所成角的正弦值;(3)若为棱上一点,满足,求二面角的余弦值.19.(12分)选修4-5:不等式选讲已知函数.(1)设,求不等式的解集;(2)已知,且的最小值等于,求实数的值.20.(12分)改革开放40年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各50人,进行问卷测评,所得分数的频率分布直方图如图所示.规定得分在80分以上为交通安全意识强.安全意识强安全意识不强合计男性女性合计(Ⅰ)求的值,并估计该城市驾驶员交通安全意识强的概率;(Ⅱ)已知交通安全意识强的样本中男女比例为4:1,完成2×2列联表,并判断有多大把握认为交通安全意识与性别有关;(Ⅲ)在(Ⅱ)的条件下,从交通安全意识强的驾驶员中随机抽取2人,求抽到的女性人数的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.82821.(12分)如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形,在上,且面.(1)求证:是的中点;(2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.22.(10分)已知等差数列满足,公差,等比数列满足,,.求数列,的通项公式;若数列满足,求的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个个体是01,选D.考点:此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力.2、A【解析】

求出函数的解析式,由函数为偶函数得出的表达式,然后利用充分条件和必要条件的定义判断即可.【详解】将函数的图象沿轴向左平移个单位长度,得到的图象对应函数的解析式为,若函数为偶函数,则,解得,当时,.因此,“”是“是偶函数”的充分不必要条件.故选:A.【点睛】本题考查充分不必要条件的判断,同时也考查了利用图象变换求三角函数解析式以及利用三角函数的奇偶性求参数,考查运算求解能力与推理能力,属于中等题.3、C【解析】

联立方程解得M(3,),根据MN⊥l得|MN|=|MF|=4,得到△MNF是边长为4的等边三角形,计算距离得到答案.【详解】依题意得F(1,0),则直线FM的方程是y=(x-1).由得x=或x=3.由M在x轴的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直线FM的倾斜角,即∠NMF=60°,因此△MNF是边长为4的等边三角形点M到直线NF的距离为故选:C.【点睛】本题考查了直线和抛物线的位置关系,意在考查学生的计算能力和转化能力.4、D【解析】

由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e.【详解】由题意得,,,.故选:D.【点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.5、B【解析】

由函数解析式中含绝对值,所以去绝对值并画出函数图象,结合图象即可求得在上的最大值和最小值.【详解】依题意,,作出函数的图象如下所示;由函数图像可知,当时,有最大值,当时,有最小值.故选:B.【点睛】本题考查了绝对值函数图象的画法,由函数图象求函数的最值,属于基础题.6、B【解析】

根据线面平行、线面垂直和空间角的知识,判断A选项的正确性.由线面平行有关知识判断B选项的正确性.根据面面垂直的判定定理,判断C选项的正确性.根据面面平行的性质判断D选项的正确性.【详解】A.若,则在中存在一条直线,使得,则,又,那么,故正确;B.若,则或相交或异面,故不正确;C.若,则存在,使,又,则,故正确.D.若,且,则或,又由,故正确.故选:B【点睛】本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.7、A【解析】

由复数的运算法则计算.【详解】因为,所以故选:A.【点睛】本题考查复数的运算.属于简单题.8、B【解析】

根据三视图可以得到原几何体为三棱锥,且是有三条棱互相垂直的三棱锥,根据几何体的各面面积可得最大面的面积.【详解】解:分析题意可知,如下图所示,该几何体为一个正方体中的三棱锥,最大面的表面边长为的等边三角形,故其面积为,故选B.【点睛】本题考查了几何体的三视图问题,解题的关键是要能由三视图解析出原几何体,从而解决问题.9、C【解析】

取,计算知错误,根据不等式性质知正确,得到答案.【详解】,故,,故正确;取,计算知错误;故选:.【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.10、D【解析】

根据复数乘方公式:,直接求解即可.【详解】,.故选:D【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.11、A【解析】

设坐标,根据向量坐标运算表示出,从而可利用表示出;由坐标运算表示出,代入整理可得所求的轨迹方程.【详解】设,,其中,,即关于轴对称故选:【点睛】本题考查动点轨迹方程的求解,涉及到平面向量的坐标运算、数量积运算;关键是利用动点坐标表示出变量,根据平面向量数量积的坐标运算可整理得轨迹方程.12、C【解析】

根据题意可知当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大,由椭圆的几何性质即可确定此时椭圆的离心率,进而确定离心率的取值范围.【详解】当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大.此时椭圆长轴长为,短轴长为6,所以椭圆离心率,所以.故选:C【点睛】本题考查了橢圆的定义及其性质的简单应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,则,由题意可得故当时,由不等式,可得,或求得,或故答案为(14、4038.【解析】

由函数图象的对称性得:函数图象与函数图象的交点关于点对称,则,,即,得解.【详解】由知:得函数的图象关于点对称又函数的图象关于点对称则函数图象与函数图象的交点关于点对称则故,即本题正确结果:【点睛】本题考查利用函数图象的对称性来求值的问题,关键是能够根据函数解析式判断出函数的对称中心,属中档题.15、或【解析】

用表示出的面积,求得等量关系,联立焦距的大小,以及,即可容易求得,则离心率得解.【详解】联立解得.所以的面积,所以.而由双曲线的焦距为知,,所以.联立解得或故双曲线的离心率为或.故答案为:或.【点睛】本题考查双曲线的方程与性质,考查运算求解能力以及函数与方程思想,属中档题.16、【解析】

转化()为,即得解.【详解】由题意:().故答案为:【点睛】本题考查类比法求函数的值域,考查了学生逻辑推理,转化划归,数学运算的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ).(Ⅱ)见解析.【解析】

(Ⅰ)人中很幸福的有人,可以先计算其逆事件,即人都认为不很幸福的概率,再用减去人都认为不很幸福的概率即可;(Ⅱ)根据题意,随机变量,列出分布列,根据公式求出期望即可.【详解】(Ⅰ)设事件抽出的人至少有人是“很幸福”的,则表示人都认为不很幸福(Ⅱ)根据题意,随机变量,的可能的取值为;;;所以随机变量的分布列为:所以的期望【点睛】本题考查了离散型随机变量的概率分布列,数学期望的求解,概率分布中的二项分布问题,属于常规题型.18、(1)证明见解析(2)(3)【解析】

(1)根据题意以为坐标原点,建立空间直角坐标系,写出各个点的坐标,并表示出,由空间向量数量积运算即可证明.(2)先求得平面的法向量,即可求得直线与平面法向量夹角的余弦值,即为直线与平面所成角的正弦值;(3)由点在棱上,设,再由,结合,由空间向量垂直的坐标关系求得的值.即可表示出.求得平面和平面的法向量,由空间向量数量积的运算求得两个平面夹角的余弦值,再根据二面角的平面角为锐角即可确定二面角的余弦值.【详解】(1)证明:∵底面,,以为坐标原点,建立如图所示的空间直角坐标系,∵,,点为棱的中点.∴,,,,,,.(2),设平面的法向量为.则,代入可得,令解得,即,设直线与平面所成角为,由直线与平面夹角可知所以直线与平面所成角的正弦值为.(3),由点在棱上,设,故,由,得,解得,即,设平面的法向量为,由,得,令,则取平面的法向量,则二面角的平面角满足,由图可知,二面角为锐二面角,故二面角的余弦值为.【点睛】本题考查了空间向量的综合应用,由空间向量证明线线垂直,求直线与平面夹角及平面与平面形成的二面角大小,计算量较大,属于中档题.19、(1)(2)【解析】

(1)把f(x)去绝对值写成分段函数的形式,分类讨论,分别求得解集,综合可得结论.(2)把f(x)去绝对值写成分段函数,画出f(x)的图像,找出利用条件求得a的值.【详解】(1)时,.当时,即为,解得.当时,,解得.当时,,解得.综上,的解集为.(2).,由的图象知,,.【点睛】本题主要考查含绝对值不等式的解法及含绝对值的函数的最值问题,体现了分类讨论的数学思想,属于中档题20、(Ⅰ).0.2(Ⅱ)见解析,有的把握认为交通安全意识与性别有关(Ⅲ)见解析,【解析】

(Ⅰ)直接根据频率和为1计算得到答案.(Ⅱ)完善列联表,计算,对比临界值表得到答案.(Ⅲ)的取值为,计算概率得到分布列,计算数学期望得到答案.【详解】(Ⅰ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论