版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河南省郑州一〇六中学数学高二上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知正实数a,b满足,若不等式对任意的实数x恒成立,则实数m的取值范围是()A. B.C. D.2.已知各项均为正数的等比数列{},=5,=10,则=A. B.7C.6 D.3.瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.若满足,顶点,且其“欧拉线”与圆相切,则:①.圆M上的点到原点的最大距离为②.圆M上存在三个点到直线的距离为③.若点在圆M上,则的最小值是④.若圆M与圆有公共点,则上述结论中正确的有()个A.1 B.2C.3 D.44.已知,且直线始终平分圆的周长,则的最小值是()A.2 B.C.6 D.165.命题的否定是()A. B.C. D.6.已知等比数列的各项均为正数,且,则()A. B.C. D.7.若圆上至少有三个点到直线的距离为1,则半径的取值范围是()A. B.C. D.8.若函数单调递增,则实数a的取值范围为()A. B.C. D.9.已知正三棱柱中,,点为中点,则异面直线与所成角的余弦值为()A. B.C. D.10.如图,O是坐标原点,P是双曲线右支上的一点,F是E的右焦点,延长PO,PF分别交E于Q,R两点,已知QF⊥FR,且,则E的离心率为()A. B.C. D.11.圆心在x轴负半轴上,半径为4,且与直线相切的圆的方程为()A. B.C. D.12.数列1,-3,5,-7,9,…的一个通项公式为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知几何体如图所示,其中四边形ABCD,CDGF,ADGE均为正方形,且边长为1,点M在DG上,若直线MB与平面BEF所成的角为45°,则___________.14.已知关于的不等式恒成立,则实数的取值范围是___________.15.方程的曲线的一条对称轴是_______,的取值范围是______.16.数列满足前项和,则数列的通项公式为_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在柯桥古镇的开发中,为保护古桥OA,规划在O的正东方向100m的C处向对岸AB建一座新桥,使新桥BC与河岸AB垂直,并设立一个以线段OA上一点M为圆心,与直线BC相切的圆形保护区(如图所示),且古桥两端O和A与圆上任意一点的距离都不小于50m,经测量,点A位于点O正南方向25m,,建立如图所示直角坐标系(1)求新桥BC的长度;(2)当OM多长时,圆形保护区的面积最小?18.(12分)已知抛物线的焦点在直线上(1)求抛物线的方程(2)设直线经过点,且与抛物线有且只有一个公共点,求直线的方程19.(12分)已知数列的前n项和,(1)求数列的通项公式;(2)设,,求数列的前n项和20.(12分)已知椭圆的右焦点为,且经过点.(1)求椭圆的标准方程;(2)设椭圆的左顶点为,过点的直线(与轴不重合)交椭圆于两点,直线交直线于点,若直线上存在另一点,使.求证:三点共线.21.(12分)已知以点为圆心的圆与直线相切,过点的动直线l与圆A相交于M,N两点(1)求圆A的方程(2)当时,求直线l方程22.(10分)已知函数,且(1)求曲线在点处的切线方程;(2)求函数在区间上的最小值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用基本不等式求出的最小值16,分离参数即可.【详解】因为,,,所以,当且仅当,即,时取等号由题意,得,即对任意的实数x恒成立,又,所以,即故选:D2、A【解析】由等比数列的性质知,a1a2a3,a4a5a6,a7a8a9成等比数列,所以a4a5a6=故答案为考点:等比数列的性质、指数幂的运算、根式与指数式的互化等知识,转化与化归的数学思想3、A【解析】由题意求出的垂直平分线可得△的欧拉线,再由圆心到直线的距离求得,得到圆的方程,求出圆心到原点的距离,加上半径判断A;求出圆心到直线的距离判断B;再由的几何意义,即圆上的点与定点连线的斜率判断C;由两个圆有公共点可得圆心距与两个半径之间的关系,求得的取值范围判断D【详解】由题意,△的欧拉线即的垂直平分线,,,的中点坐标为,,则的垂直平分线方程为,即由“欧拉线”与圆相切,到直线的距离,,则圆的方程为:,圆心到原点的距离为,则圆上的点到原点的最大距离为,故①错误;圆心到直线的距离为,圆上存在三个点到直线的距离为,故②正确;的几何意义:圆上的点与定点连线的斜率,设过与圆相切的直线方程为,即,由,解得,的最小值是,故③错误;的圆心坐标,半径为,圆的的圆心坐标为,半径为,要使圆与圆有公共点,则圆心距的范围为,,,解得,故④错误故选:A4、B【解析】由已知直线过圆心得,再用均值不等式即可.【详解】由已知直线过圆心得:,,当且仅当时取等.故选:B.5、C【解析】根据含全称量词命题的否定可写出结果.【详解】全称命题的否定是特称命题,所以命题的否定是.故选:C6、B【解析】利用对数的运算性质,结合等比数列的性质可求得结果.【详解】是各项均为正数的等比数列,,,,.故选:B7、B【解析】先求出圆心到直线的距离为,由此可知当圆的半径为时,圆上恰有三点到直线的距离为,当圆的半径时,圆上恰有四个点到直线的距离为,故半径的取值范围是,即可求出答案.【详解】由已知条件得的圆心坐标为,圆心到直线为,∵圆上至少有三个点到直线的距离为1,∴圆的半径的取值范围是,即,即半径的取值范围是.故选:.8、D【解析】根据函数的单调性,可知其导数在R上恒成立,分离参数,即可求得答案.【详解】由题意可知单调递增,则在R上恒成立,可得恒成立,当时,取最小值-1,故,故选:D9、A【解析】根据异面直线所成角的定义,取中点为,则为异面直线和所成角或其补角,再解三角形即可求出【详解】如图所示:设中点为,则在三角形中,为中点,为中位线,所以有,,所以为异面直线和所成角或其补角,在三角形中,,所以由余弦定理有,故选:A.10、B【解析】令双曲线E的左焦点为,连线即得,设,借助双曲线定义及直角用a表示出|PF|,,再借助即可得解.【详解】如图,令双曲线E的左焦点为,连接,由对称性可知,点线段中点,则四边形是平行四边形,而QF⊥FR,于是有是矩形,设,则,,,在中,,解得或m=0(舍去),从而有,中,,整理得,,所以双曲线E的离心率为故选:B11、A【解析】根据题意,设圆心为坐标为,,由直线与圆相切的判断方法可得圆心到直线的距离,解得的值,即可得答案【详解】根据题意,设圆心为坐标为,,圆的半径为4,且与直线相切,则圆心到直线的距离,解得:或13(舍,则圆的坐标为,故所求圆的方程为,故选:A12、C【解析】观察,奇偶相间排列,偶数位置为负,所以为,数字是奇数,满足2n-1,所以可求得通项公式.【详解】由符号来看,奇数项为正,偶数项为负,所以符号满足,由数值1,3,5,7,9…显然满足奇数,所以满足2n-1,所以通项公式为,选C.【点睛】本题考查观察法求数列的通项公式,解题的关键是培养对数字的敏锐性,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】把该几何体补成一个正方体,如图,利用正方体的性质证明面面垂直得出直线MB与平面BEF所成的角,然后计算可得【详解】把该几何体补成一个正方体,如图,,连接,由平面,平面,得,同理,又正方形中,,,平面,所以平面,而平面,所以平面平面,所以平面内的直线在平面上的射影是,即是直线MB与平面BEF所成的角,,,,故答案为:14、【解析】参变分离,可得,设,求导分析单调性,可得,即得解【详解】因为,所以不等式可化为,设,则,设,由于故在上单调递增,且,则当时,,单调递减;当时,,单调递增,所以,则,即.故答案为:15、①.x轴或直线②.【解析】根据给定条件分析方程的性质即可求得对称轴及x的取值范围作答.【详解】方程中,因,则曲线关于x轴对称,又,解得,此时曲线与都关于直线对称,曲线的对称轴是x轴或直线,的取值范围是.故答案为:x轴或直线;16、【解析】由已知中前项和,结合,分别讨论时与时的通项公式,并由时,的值不满足时的通项公式,故要将数列的通项公式写成分段函数的形式【详解】∵数列前项和,∴当时,,又∵当时,,故,故答案为.【点睛】本题考查的知识点是等差数列的通项公式,其中正确理解由数列的前n项和Sn,求通项公式的方法和步骤是解答本题的关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)80m;(2).【解析】(1)根据斜率的公式,结合解方程组法和两点间距离公式进行求解即可;(2)根据圆的切线性质进行求解即可.【小问1详解】由题意,可知,,∵∴直线BC方程:①,同理可得:直线AB方程:②由①②可知,∴,从而得故新桥BC得长度为80m【小问2详解】设,则,圆心,∵直线BC与圆M相切,∴半径,又因为,∵∴,所以当时,圆M的面积达到最小18、(1)(2)的方程为、、【解析】(1)求得点的坐标,由此求得,进而求得抛物线的方程.(2)结合图象以及判别式求得直线的方程.【小问1详解】抛物线的焦点在轴上,且开口向上,直线与轴的交点为,则,所以,抛物线的方程为.【小问2详解】当直线的斜率不存在时,直线与抛物线只有一个公共点.那个直线的斜率存在时,设直线的方程为,,,,解得或.所以直线的方程为或.综上所述,的方程为、、.19、(1);(2)【解析】(1)将代入可求得.根据通项公式与前项和的关系,可得数列为等比数列,由等比数列的通项公式即可求得数列的通项公式.(2)由(1)可得数列的通项公式,代入中,结合裂项法求和即可得前n项和.【详解】(1)当时,由得;当时,由得是首项为3,公比为3的等比数列当,满足此式所以(2)由(1)可知,【点睛】本题考查了通项公式与前项和的关系,裂项法求和的应用,属于基础题.20、(1);(2)证明见解析.【解析】(1)根据给定条件利用椭圆的定义求出轴长即可计算作答.(2)根据给定条件设出的方程,与椭圆C的方程联立,求出直线PA的方程并求出点M的坐标,求出点N的坐标,再利用斜率推理作答.【小问1详解】依题意,椭圆的左焦点,由椭圆定义得:即,则,所以椭圆的标准方程为.【小问2详解】由(1)知,,直线不垂直y轴,设直线方程为,,由消去x得:,则,,直线的斜率,直线的方程:,而直线,即,直线的斜率,而,即,直线的斜率,直线的方程:,则点,直线的斜率,直线的斜率,,而,即,所以三点共线.【点睛】思路点睛:解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系21、(1);(2)或.【解析】(1)利用圆心到直线的距离公式求圆的半径,从而求解圆的方程;(2)根据相交弦长公式,求出圆心到直线的距离,设出直线方程,再根据点到直线的距离公式确定直线方程【详解】(1)由题意知到直线的距离为圆A半径r,所以,所以圆A的方程为(2)设的中点为Q,则由垂径定理可知,且,在中由勾股定理易知,设动直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公共政策自考试题及答案
- 高炉考试题及答案
- 2025 年大学应用物理学(应用物理学概论)试题及答案
- 液糖化工岗前复测考核试卷含答案
- 飞机自动驾驶仪测试调整工岗前安全理论考核试卷含答案
- 打叶复烤设备操作工岗前履职考核试卷含答案
- 布绒玩具制作工岗前规章制度考核试卷含答案
- 2025年大学中药制剂学(中药制剂技术)试题及答案
- 2025年中职机械基础(机械原理认知)试题及答案
- 2025年大学工程材料及机械制造基础(材料成形原理)试题及答案
- 2025年广东省春季高考语文试卷(解析卷)
- 垃圾焚烧发电检修培训
- 城市老旧建筑改造中的结构加固与性能提升
- 全国计算机等级考试NCRE考务管理系统操作使用手册
- 市政工程材料试验检测送检规范
- 食材销售方案
- 国资委机关公开遴选公务员面试经典题及答案
- 水厂建设总体设计方案
- 服务期间与其他单位部门综合协调方案
- 拆迁专项法律顾问服务方案
- 学校行政管理岗竞聘
评论
0/150
提交评论