版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教科版必修二第三章万有引力定律同步测试题2026届数学高一上期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.三个数,,的大小顺序是A. B.C. D.2.函数的单调递减区间是A. B.C. D.3.要得到的图像,只需将函数的图像()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位4.函数的定义域是()A.(-2,] B.(-2,)C.(-2,+∞) D.(,+∞)5.已知函数在区间上是单调增函数,则实数的取值范围为()A. B.C. D.6.若函数f(x)=2x+3x+a在区间(0,1)A.(-∞,-5)C.(0,5) D.(1,+7.已知函数在R上是单调函数,则的解析式可能为()A. B.C. D.8.已知,,则A. B.C. D.9.已知,,则的值约为(精确到)()A. B.C. D.10.函数的零点所在区间是()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,函数,若函数有两个零点,则实数k的取值范围是________12.已知点P(-,1),点Q在y轴上,直线PQ的倾斜角为120°,则点Q的坐标为_____13.已知函数若存在实数使得函数的值域为,则实数的取值范围是__________14.若则函数的最小值为________15.将函数y=sinx的图象上的所有点向右平移个单位长度,所得图象的函数解析式为_________.16.计算值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)求a值以及函数的定义域;(2)求函数在区间上的最小值;(3)求函数的单调递增区间18.已知函数.(1)判断函数的奇偶性;(2)求证:函数在为单调增函数;(3)求满足的的取值范围.19.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若,则=___________.20.已知函数,.(1)当时,解关于的方程;(2)当时,函数在有零点,求实数的取值范围.21.已知函数的图像如图所示.(1)求函数的解析式;(2)当时,求函数的最大值和最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由指数函数和对数函数单调性得出范围,从而得出结果【详解】,,;故选A【点睛】本题考查指数函数和对数函数的单调性,熟记函数性质是解题的关键,是基础题.2、A【解析】令,则有或,在上的减区间为,故在上的减区间为,选A3、A【解析】化简函数,即可判断.【详解】,需将函数的图象向左平移个单位.故选:A.4、B【解析】由分母中根式内部的代数式大于0,对数式的真数大于0联立不等式组求解【详解】解:由,解得函数的定义域是故选:B【点睛】本题考查函数的定义域及其求法,属于基础题5、B【解析】根据二次函数的图象与性质,可知区间在对称轴的右面,即,即可求得答案.【详解】函数为对称轴开口向上的二次函数,在区间上是单调增函数,区间在对称轴的右面,即,实数的取值范围为.故选B.【点睛】本题考查二次函数的图象与性质,明确二次函数的对称轴、开口方向与函数的单调性的关系是解题关键.6、B【解析】利用零点存在性定理知f(0)⋅f(1)<0,代入解不等式即可得解.【详解】函数f(x)=2x+3x+a由零点存在性定理知f(0)⋅f(1)<0,即1+a5+a<0所以实数a的取值范围是(-5,-1)故选:B7、C【解析】根据条件可知当时,为增函数,在在为增函数,且,结合各选项进行分析判断即可【详解】当时,为增函数,则在上为增函数,且,A.在上为增函数,,故不符合条件;B.为减函数,故不符合条件;C.在上为增函数,,故符合条件;D.为减函数,故不符合条件.故选:C.8、C【解析】由已知可得,故选C考点:集合的基本运算9、B【解析】利用对数的运算性质将化为和的形式,代入和的值即可得解.【详解】.故选:B10、C【解析】利用零点存在定理可得出结论.【详解】函数在上单调递增,因为,,,,所以,函数的零点所在区间是.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意函数有两个零点可得,得,令与,作出函数与的图象如图所示:由图可知,函数有且只有两个零点,则实数的取值范围是.故答案为:.【点睛】本题考查分段函数的应用,函数零点的判断等知识,解题时要灵活应用数形结合思想12、(0,-2)【解析】设点坐标为,利用斜率与倾斜角关系可知,解得即可.【详解】因为在轴上,所以可设点坐标为,又因为,则,解得,因此,故答案为.【点睛】本题主要考查了直线的斜率计算公式与倾斜角的正切之间的关系,属于基础题.13、【解析】当时,函数为减函数,且在区间左端点处有令,解得令,解得的值域为,当时,fx=x在,上单调递增,在上单调递减,从而当时,函数有最小值,即为函数在右端点的函数值为的值域为,则实数的取值范围是点睛:本题主要考查的是分段函数的应用.当时,函数为减函数,且在区间左端点处有,当时,在,上单调递增,在上单调递减,从而当时,函数有最小值,即为,函数在右端点的函数值为,结合图象即可求出答案14、1【解析】结合图象可得答案.【详解】如图,函数在同一坐标系中,且,所以在时有最小值,即.故答案为:1.15、【解析】利用相位变换直接求得.【详解】按照相位变换,把函数y=sinx的图象上的所有点向右平移个单位长度,得到.故答案为:.16、1;【解析】三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2);(3)﹒【解析】(1)由f(1)=-2解得a,由1+x>0且3-x>0解得定义域;(2)化简f(x)解析式,根据x范围求出真数部分范围,即可求其最值;(3)根据复合函数单调性判断方法“同增异减”即可﹒【小问1详解】,解得;故,由,解得:,故函数的定义域是;【小问2详解】由(1)得,令得,则原函数为,由于该函数在上单调递减,∴,因此,函数在区间上的最小值是;【小问3详解】由(1)得:,令的对称轴是,故在递增,在递减,∴在递增,在递减,故函数单调递增区间为18、(1)为奇函数;(2)证明见解析;(3).【解析】(Ⅰ)求出定义域为{x|x≠0且x∈R},关于原点对称,再计算f(-x),与f(x)比较即可得到奇偶性;(Ⅱ)运用单调性的定义,注意作差、变形、定符号、下结论等步骤;(Ⅲ)讨论x>0,x<0,求出f(x)的零点,再由单调性即可解得所求取值范围试题解析:(1)定义域为{x|x≠0且x∈R},关于原点对称,,所以为奇函数;(2)任取,所以在为单调增函数;(3)解得,所以零点为,当时,由(2)可得的的取值范围为,的的取值范围为,又该函数为奇函数,所以当时,由(2)可得的的取值范围为,综上:所以解集为.19、【解析】因为和关于轴对称,所以,那么,(或),所以.【考点】同角三角函数,诱导公式,两角差余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若与的终边关于轴对称,则,若与的终边关于轴对称,则,若与的终边关于原点对称,则.20、(1);(2)【解析】(1)方程变成,令,化简解关于的一元二次方程,从而求出的值.(2)将零点转化为方程有实根,即时有解,令,,得:,从而得出取值范围.【详解】(1),令,则,解得,所以(2),时,设,,,对称轴为,时,,.21、(1);(2)最大值,最小值为-1.【解析】(1)由图可知,,可得,再将点代入得,结合,可得的值,即可求出函数的解析式;(2)根据函数的周期,可求时函数的最大值和最小值就是转化为求函数在区间上的最大值和最小值,结合三角函数图象,即可求出函数的最大值和最小值.试题解析:(1)由图可知:,则∴,将点代入得,,∴,,即,∵∴∴函数的解析式为.(2)∵函数的周期是∴求时函数的最大值和最小值就是转化为求函数在区间上的最大值和最小值.由图像可知,当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小额充值代理合同范本
- 广告设计战略协议合同
- 托运合同发票补充协议
- 工伤赔偿款协议书范本
- 山西药品采购合同范本
- 家居设计租赁合同范本
- 广告设计营销合同范本
- 委托销售槟榔合同范本
- 高考物理单元总复习牛顿第一定律牛顿第三定律新人教版教案
- 公开课教案教学设计苏教初中语文七上古代寓言二则一二(2025-2026学年)
- 智慧农业中的精准灌溉与施肥技术
- 沥青维护工程投标方案技术标
- 深圳机场突发事件应急预案
- 水电站建筑物课程设计
- 个人借款合同个人借款协议
- 生物科技股份有限公司GMP质量手册(完整版)资料
- 儿童行为量表(CBCL)(可打印)
- 地貌学与第四纪地质学总结
- 2023年德语专业四级考试真题
- GB/T 36713-2018能源管理体系能源基准和能源绩效参数
- 温度仪表基础知识课件
评论
0/150
提交评论