山西省朔州市第二中学2026届数学高一上期末综合测试模拟试题含解析_第1页
山西省朔州市第二中学2026届数学高一上期末综合测试模拟试题含解析_第2页
山西省朔州市第二中学2026届数学高一上期末综合测试模拟试题含解析_第3页
山西省朔州市第二中学2026届数学高一上期末综合测试模拟试题含解析_第4页
山西省朔州市第二中学2026届数学高一上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省朔州市第二中学2026届数学高一上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知幂函数为偶函数,则实数的值为()A.3 B.2C.1 D.1或22.已知,则等于()A.1 B.2C.3 D.63.把表示成,的形式,则的值可以是()A. B.C. D.4.已知α,β是两个不同的平面,给出下列四个条件:①存在一条直线a,使得a⊥α,a⊥β;②存在两条平行直线a,b,使得a//α,a//β,b//α,b//β;③存在两条异面直线a,b,使得a⊂α,b⊂β,a//β,b//α;④存在一个平面γ,使得γ⊥α,γ⊥β其中可以推出α//β的条件个数是A.1 B.2C.3 D.45.集合A=,B=,则集合AB=()A. B.C. D.6.定义在上的奇函数,在上单调递增,且,则满足的的取值范围是()A. B.C. D.7.已知函数,则该函数的单调递减区间是()A. B.C. D.8.已知角终边经过点,若,则()A. B.C. D.9.已知幂函数的图象过点(2,),则的值为()A. B.C. D.10.已知函数,则,()A.4 B.3C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.定义:关于的两个不等式和的解集分别为和,则称这两个不等式为相连不等式.如果不等式与不等式为相连不等式,且,则_________12.已知,则_________13.如果函数满足在集合上的值域仍是集合,则把函数称为H函数.例如:就是H函数.下列函数:①;②;③;④中,______是H函数(只需填写编号)(注:“”表示不超过x的最大整数)14.若函数y=是函数的反函数,则_________________15.不论为何实数,直线恒过定点__________.16.已知函数,,若对任意,存在,使得,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,.(1)当时,求;(2)若,求实数的取值范围.18.(1)化简(2)求值.19.已知函数(,),若函数在区间上的最大值为3,最小值为2.(1)求函数的解析式;(2)求在上的单调递增区间;(3)是否存在正整数,满足不等式,若存在,找出所有这样的,的值,若不存在,说明理由.20.已知α是第二象限角,且tanα=-(1)求sinα,cos(2)求sinα-5π+21.已知函数(1)求的值域;(2)当时,关于的不等式有解,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意利用幂函数的定义和性质,得出结论【详解】幂函数为偶函数,,且为偶数,则实数,故选:C2、A【解析】利用对数和指数互化,可得,,再利用即可求解.【详解】由得:,,所以,故选:A3、B【解析】由结合弧度制求解即可.【详解】∵,∴故选:B4、B【解析】当α,β不平行时,不存在直线a与α,β都垂直,∴a⊥α,a⊥β⇒α∥β,故1正确;存在两条平行直线a,b,a∥α,b∥β,a∥β,b∥α,则α,β相交或平行,所以2不正确;存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α,由面面平行的判定定理得α∥β,故3正确;存在一个平面γ,使得γ⊥α,γ⊥β,则α,β相交或平行,所以4不正确;故选B5、B【解析】直接根据并集的运算可得结果.【详解】由并集的运算可得.故选:B.6、B【解析】由题意可得,,在递增,分别讨论,,,,,结合的单调性,可得的范围【详解】函数是定义在上的奇函数,在区间上单调递增,且(1),可得,,在递增,若时,成立;若,则成立;若,即,可得(1),即有,可得;若,则,,可得,解得;若,则,,可得,解得综上可得,的取值范围是,,故选:B7、C【解析】先用诱导公式化简,再求单调递减区间.【详解】要求单调递减区间,只需,.故选:C.【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于或的性质解题;(2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式8、C【解析】根据三角函数的定义,列出方程,即可求解.【详解】由题意,角终边经过点,可得,又由,根据三角函数的定义,可得且,解得.故选:C.9、A【解析】令幂函数且过(2,),即有,进而可求的值【详解】令,由图象过(2,)∴,可得故∴故选:A【点睛】本题考查了幂函数,由幂函数的形式及其所过的定点求解析式,进而求出对应函数值,属于简单题10、D【解析】根据分段函数解析式代入计算可得;【详解】解:因为,,所以,所以故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】二次不等式解的边界值即为与之对应的二次方程的根,利用根与系数的关系可得,整理得,结合范围判定求值【详解】设的解集为,则的解集为由二次方程根与系数的关系可得∴,即∴,即又∵,则∴,即故答案为:12、【解析】两边同时取以15为底的对数,然后根据对数性质化简即可.【详解】因为所以,所以,故答案为:13、③④【解析】根据新定义进行判断.【详解】根据定义可以判断①②在集合上的值域不是集合,显然不是H函数.③④是H函数.③是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足是H函数.④是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足H函数.故答案为:③④14、0【解析】可得,再代值求解的值即可【详解】的反函数为,则,则,则.故答案为:015、【解析】直线整理可得.令,解得,即直线恒过定点点睛:直线恒过定点问题,一般就是将参数提出来,使得其系数和其他项均为零,即可得定点.16、【解析】若任意,存在,使得成立,只需,∵,在该区间单调递增,即,又∵,在该区间单调递减,即,则,,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)求出集合A和B,根据并集的计算方法计算即可;(2)求出,分B为空集和不为空集讨论即可.【小问1详解】,当时,,∴;【小问2详解】{或x>4},当时,,,解得a<1;当时,若,则解得.综上,实数的取值范围为.18、(1);(2).【解析】(1)利用指数运算性质化简可得结果;(2)利用对数、指数的运算性质化简可得结果.【详解】(1)原式;(2)原式.19、(1)(2)(3)存在,,或,或,【解析】(1)根据函数在区间上的最大值为3,最小值为2,利用正弦函数的最值求解;(2)利用正弦函数的单调性求解;(3)先化简不等式,再根据,为正整数求解.【小问1详解】解:∵,∴,∴,又∵m>0,最大值为3,最小值为2,∴,解得m=2,n=1.∴.【小问2详解】令,k∈Z,得到,k∈Z,当k=0时,,∴在[0,2]上的单调递增区间是.【小问3详解】由,得,∵a∈N*,b∈N*,∴a=1时,b=1或2;a=2时,b=1;a>2时,b不存在,∴所有满足题意a,b的值为:a=1,b=1或a=1,b=2或a=2,b=1.20、(1)sinα=(2)713【解析】(1)解方程组sin2(2)直接利用诱导公式化简求值.【小问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论