福建省晋江市2026届数学高二上期末预测试题含解析_第1页
福建省晋江市2026届数学高二上期末预测试题含解析_第2页
福建省晋江市2026届数学高二上期末预测试题含解析_第3页
福建省晋江市2026届数学高二上期末预测试题含解析_第4页
福建省晋江市2026届数学高二上期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省晋江市2026届数学高二上期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的导函数的图象如图所示,则下列结论正确的是().A.函数在上是增函数B.C.D.是函数的极小值点2.抛物线有一条重要的性质:平行于抛物线的轴的光线,经过抛物线上的一点反射后经过它的焦点.反之,从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.已知抛物线,从点发出一条平行于x轴的光线,经过抛物线两次反射后,穿过点,则光线从A出发到达B所走过的路程为()A.8 B.10C.12 D.143.①直线在轴上的截距为;②直线的倾斜角为;③直线必过定点;④两条平行直线与间的距离为.以上四个命题中正确的命题个数为()A. B.C. D.4.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.如:甲、乙、丙、丁分别分得,,,,递减的比例为,那么“衰分比”就等于,今共有粮石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得石,甲、丙所得之和为石,则“衰分比”为()A. B.C. D.5.“”是“直线与圆相切”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知直线与圆相离,则以,,为边长的三角形为()A.钝角三角形 B.直角三角形C.锐角三角形 D.不存在7.如图是函数的导函数的图象,下列说法正确的是()A.函数在上是增函数B.函数在上是减函数C.是函数的极小值点D.是函数的极大值点8.直线与圆相交于点,点是坐标原点,若是正三角形,则实数的值为A.1 B.-1C. D.9.若随机事件满足,,,则事件与的关系是()A.互斥 B.相互独立C.互为对立 D.互斥且独立10.过点且垂直于的直线方程为()A. B.C. D.11.对于三次函数,给出定义:设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数图象都有对称中心,且“拐点”就是对称中心.设函数,则()A. B.C. D.12.已知双曲线满足,且与椭圆有公共焦点,则双曲线的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,正方形ABCD的边长为8,取正方形ABCD各边的中点E,F,G,H,作第2个正方形EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL.依此方法一直继续下去.①从正方形ABCD开始,第7个正方形的边长为___;②如果这个作图过程可以一直继续下去,那么作到第n个正方形,这n个正方形的面积之和为___.14.已知数列的前4项依次为,,,,则的一个通项公式为________15.容积为V圆柱形密封金属饮料罐,它的高与底面半径比值为___________时用料最省.16.用秦九韶算法求函数,当时的值时,___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,中,且,将沿中位线EF折起,使得,连结AB,AC,M为AC的中点.(1)证明:平面ABC;(2)求二面角的余弦值.18.(12分)(1)求过点,且与直线垂直的直线方程;(2)甲,乙,丙等7名同学站成一排,若甲和乙相邻,但甲乙二人都不和丙相邻,则共有多少种不同排法?19.(12分)已知等差数列的前n项和为,且,(1)求数列的通项公式;(2)若,求k的值20.(12分)已知定点,圆:,点Q为圆上动点,线段MQ的垂直平分线交NQ于点P,记P的轨迹为曲线C(1)求曲线C的方程;(2)过点M与N作平行直线和,分别交曲线C于点A,B和点D,E,求四边形ABDE面积的最大值21.(12分)(1)已知等轴双曲线的上顶点到一条渐近线的距离为,求此双曲线的方程;(2)已知抛物线的焦点为,设过焦点且倾斜角为的直线交抛物线于,两点,求线段的长22.(10分)已知圆M经过点F(2,0),且与直线x=-2相切.(1)求圆心M的轨迹C的方程;(2)过点(-1,0)的直线l与曲线C交于A,B两点,若,求直线l的斜率k的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据导函数的图像,可求得函数的单调区间,再根据极值点的定义逐一判断各个选项即可得出答案.【详解】解:根据函数的导函数的图象,可得或时,,当或时,,所以函数在和上递减,在和上递增,故A错误;,故B正确;,故C错误;是函数的极大值点,故D错误.故选:B.2、C【解析】利用抛物线的定义求解.【详解】如图所示:焦点为,设光线第一次交抛物线于点,第二次交抛物线于点,过焦点F,准线方程为:,作垂直于准线于点,作垂直于准线于点,则,,,,故选:C3、B【解析】由直线方程的性质依次判断各命题即可得出结果.【详解】对于①,直线,令,则,直线在轴上的截距为-,则①错误;对于②,直线的斜率为,倾斜角为,则②正确;对于③直线,由点斜式方程可知直线必过定点,则③正确;对于④,两条平行直线与间的距离为,则④错误.故选:B.4、A【解析】根据题意,设衰分比为,甲分到石,,然后可得和,解出、的值即可【详解】根据题意,设衰分比为,甲分到石,,又由今共有粮食石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得90石,甲、丙所得之和为164石,则,,解得:,,故选:A5、A【解析】根据题意,结合直线与圆的位置关系求出,即可求解.【详解】根据题意,由直线与圆相切,知圆心到直线的距离,解得或,因此“”是“直线与圆相切”的充分不必要条件.故选:A.6、A【解析】应用直线与圆的相离关系可得,再由余弦定理及三角形内角的性质即可判断三角形的形状.【详解】由题设,,即,又,所以,且,故以,,为边长的三角形为钝角三角形.故选:A.7、A【解析】根据图象,结合导函数的正负性、极值的定义逐一判断即可.【详解】由图象可知,当时,;当时,,在上单调递增,在上单调递减,可知B错误,A正确;是极大值点,没有极小值,和不是函数的极值点,可知C,D错误故选:A8、C【解析】由题意得,直线被圆截得的弦长等于半径.圆的圆心坐标,设圆半径为,圆心到直线的距离为,则由条件得,整理得所以,解得.选C9、B【解析】利用独立事件,互斥事件和对立事件的定义判断即可【详解】解:因为,,又因为,所以有,所以事件与相互独立,不互斥也不对立故选:B.10、B【解析】求出直线l的斜率,再借助垂直关系的条件即可求解作答.【详解】直线的斜率为,而所求直线垂直于直线l,则所求直线斜率为,于是有:,即,所以所求直线方程为.故选:B11、B【解析】根据“拐点”的概念可判断函数的对称中心,进而求解.【详解】,,,令,解得:,而,故函数关于点对称,,,故选:B.12、A【解析】根据椭圆的标准方程求出,利用双曲线,结合建立方程求出,,即可求出双曲线的渐近线方程【详解】椭圆的标准方程为,椭圆中的,双曲线的焦点与椭圆的焦点相同,双曲线中,双曲线满足,即又在双曲线中,即,解得:,所以双曲线的方程为,故选:A【点睛】关键点点睛:本题主要考查双曲线方程的求解,根据椭圆和双曲线的关系建立方程求出,,是解决本题的关键,考查学生的计算能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、①.1②.【解析】根据题意,正方形边长成等比数列,正方形的面积等于边长的平方可得,然后根据等比数列的通项公式及等比数列的前n项和的公式即可求解.【详解】设第n个正方形的边长为,第n个正方形的面积为,则第n个正方形的对角线长为,所以第n+1个正方形的边长为,,∴数列{}是首项为,公比为的等比数列,,∴,即第7个正方形的边长为1;∴数列{}是首项为,公比为的等比数列,故答案为:1;.14、(答案不唯一)【解析】观察数列前几项,找出规律即可写出通项公式.【详解】根据数列前几项,先不考虑正负,可知,再由奇数项为负,偶数项为正,可得到一个通项公式,故答案为:(不唯一)15、【解析】设圆柱的底面半径为,高为,容积为,由,得到,进而求得表面积,结合不等式,即可求解.【详解】设圆柱的底面半径为,高为,容积为,则,即有,可得圆柱的表面积为,当且仅当时,即时最小,即用料最省,此时,可得.故答案为:.16、0【解析】利用秦九韶算法的定义计算即可.【详解】故答案为:0三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)由勾股定理以及等腰三角形的性质得出,,再由线面垂直的判定证明即可;(2)以点为坐标原点,建立空间直角坐标系,由向量法得出面面角.【小问1详解】设,则,,平面平面,连接,,,,,即又,平面ABC【小问2详解】,以点为坐标原点,建立如下图所示的空间直角坐标系设平面的法向量为,平面的法向量为,令,则同理可得,又二面角为钝角,故二面角的余弦值为.18、(1);(2)960【解析】(1)根据题意,设要求直线为,将点的坐标代入,求出的值,即可得答案;(2)根据题意,分2步进行分析:先将除甲乙丙之外的4人全排列,再将甲乙看成一个整体,与丙一起安排在4人的空位中,由分步计数原理计算可得答案【详解】解:(1)根据题意,设所求直线为,又由所求直线经过点,即,则,即所求直线;(2)根据题意,分2步进行分析:先将除甲乙丙之外的4人全排列,有种排法,再将甲乙看成一个整体,与丙一起安排在4人的空位中,有种排法,则有种排法19、(1)(2)10【解析】(1)设等差数列的公差为d,利用已知建立方程组,解之可求得数列的通项公式;(2)利用等差数列的前项和公式,化简即可求解.【小问1详解】解:设等差数列的公差为d,由已知,,得,解得,则;小问2详解】解:由(1)得,则由,得或(舍去),所以的值为10.20、(1)(2)6【解析】(1)由椭圆的定义求解(2)设直线方程后与椭圆方程联立,由韦达定理表示弦长,将面积转化为函数后求求解【小问1详解】由题意可得,所以动点P的轨迹是以M,N为焦点,长轴长为4的椭圆,即曲线C的方程为:;【小问2详解】由题意可设的方程为,联立方程得,设,,则由根与系数关系有,所以,根据椭圆的对称性可得,与的距离即为点M到直线的距离,为,所以四边形ABDE面积为,令得,由对勾函数性质可知:当且仅当,即时,四边形ABDE面积取得最大值为6.21、(1);(2)8.【解析】(1)由等轴双曲线的一条渐近线方程为,再由点到直线距离公式求解即可;(2)求得直线方程代入抛物线,结合焦点弦长求解即可.【详解】(1)由等轴双曲线的一条渐近线方程为,且顶点到渐近线的距离为,可得,解得,故双曲线方程(2)抛物线的焦点为直线的方程为,即与抛物线方程联立,得,消,整理得,设其两根为,,且由抛物线的定义可知,所以,线段的长是【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式22、(1);(2).【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论