版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山东实验中学数学高二上期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在正方体中,P,Q两点分别从点B和点出发,以相同的速度在棱BA和上运动至点A和点,在运动过程中,直线PQ与平面ABCD所成角的变化范围为A. B.C. D.2.设函数的图象在点处的切线为,则与坐标轴围成的三角形面积的最小值为()A. B.C. D.3.函数y=ln(1﹣x)的图象大致为()A. B.C D.4.命题“,则”及其逆命题、否命题和逆否命题这四个命题中,真命题的个数为()A.0 B.2C.3 D.45.设函数,则()A.1 B.5C. D.06.下列函数中,以为最小正周期,且在上单调递减的为()A. B.C. D.7.抛物线的焦点到准线的距离()A.4 B.C.2 D.8.在等差数列中,已知,则数列的前6项之和为()A.12 B.32C.36 D.729.如图,用4种不同的颜色对A,B,C,D四个区域涂色,要求相邻的两个区域不能用同一种颜色,则不同的涂色方法有()A.24种 B.48种C.72种 D.96种10.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把个面包分给个人,使每个人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A. B.C. D.11.一动圆与圆外切,而与圆内切,那么动圆的圆心的轨迹是()A.椭圆 B.双曲线C.抛物线 D.双曲线的一支12.阅读如图所示的程序框图,运行相应的程序,输出S的结果是()A.128 B.64C.16 D.32二、填空题:本题共4小题,每小题5分,共20分。13.已知,,且,则的值是_________.14.若正实数满足,则的最大值是________15.若圆C的方程为,点P是圆C上的动点,点O为坐标原点,则的最大值为______16.已知椭圆和双曲线有相同的焦点和,设椭圆和双曲线的离心率分别为,,P为两曲线的一个公共点,且(O为坐标原点).若,则的取值范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)书籍是精神世界的入口,阅读让精神世界闪光,阅读逐渐成为许多人的一种生活习惯,每年4月23日为世界读书日.某研究机构为了解当地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示:(1)求的值;(2)为了进一步了解年轻人的阅读方式,研究机构采用分层抽样的方法从每天阅读时间位于,和的年轻人中抽取5人,再从中任选2人进行调查,求其中至少有1人每天阅读时间位于的概率.18.(12分)已知点是椭圆上的一点,且椭圆的离心率.(1)求椭圆的标准方程;(2)两动点在椭圆上,总满足直线与的斜率互为相反数,求证:直线的斜率为定值.19.(12分)内角A,B,C的对边分别为a,b,c,已知(1)求B;(2)若,且是锐角三角形,求c的值20.(12分)已知函数(为自然对数的底数).(1)求函数的单调区间;(2)若函数有且仅有2个零点,求实数的值.21.(12分)在平面直角坐标系xOy中,椭圆C:的左,右顶点分别为A、B,点F是椭圆的右焦点,,(1)求椭圆C的方程;(2)不过点A的直线l交椭圆C于M、N两点,记直线l、AM、AN的斜率分别为k、、.若,证明直线l过定点,并求出定点的坐标22.(10分)已知函数.(1)当时,求函数的单调区间;(2)若函数在其定义域上是增函数,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先过点作于点,连接,根据题意,得到即为直线与平面所成的角,设正方体棱长为,设,推出,进而可求出结果.【详解】过点作于点,连接,因为四棱柱为正方体,所以易得平面,因此即为直线与平面所成的角,设正方体棱长为,设,则,,因为两点分别从点和点出发,以相同的速度在棱和上运动至点和点,所以,因此,所以,因为,所以,则,因此.故选:C.【点睛】本题主要考查求线面角的取值范围,熟记线面角的定义即可,属于常考题型.2、C【解析】利用导数的几何意义求得切线为,求x、y轴上截距,进而可得与坐标轴围成的三角形面积,利用导数研究在上的最值即可得结果.【详解】由题设,,则,又,所以切线为,当时,当时,又,所以与坐标轴围成的三角形面积为,则,当时,当时,所以在上递减,在上递增,即.故选:C3、C【解析】根据函数的定义域和特殊点,判断出正确选项.【详解】由,解得,也即函数的定义域为,由此排除A,B选项.当时,,由此排除D选项.所以正确的为C选项.故选:C【点睛】本小题主要考查函数图像识别,属于基础题.4、D【解析】首先判断原命题的真假,写出其逆命题,即可判断其真假,再根据互为逆否命题的两个命题同真假,即可判断;【详解】解:因为命题“,则”为真命题,所以其逆否命题也为真命题;其逆命题为:则,显然也为真命题,故其否命题也为真命题;故命题“,则”及其逆命题、否命题和逆否命题这四个命题中,真命题有4个;故选:D5、B【解析】由题意结合导数的运算可得,再由导数的概念即可得解.【详解】由题意,所以,所以原式等于.故选:B.6、B【解析】A.利用正切函数的性质判断;B.作出的图象判断;C.作出的图象判断;D.作出的图象判断.【详解】A.是以为最小正周期,在上单调递增,故错误;B.如图所示:,由图象知:函数是以为最小正周期,在上单调递减,故正确;C.如图所示:,由图象知:是以为最小正周期,在上单调递增,故错误;D.如图所示:,由图象知:是以为最小正周期,在上单调递增,故错误;故选:B7、A【解析】写出抛物线的标准方程,即可确定焦点到准线的距离.【详解】由题设,抛物线的标准方程为,则,∴焦点到准线的距离为4.故选:A.8、C【解析】利用等差数列的求和公式结合角标和定理即可求解.【详解】解:等差数列中,所以等差数列的前6项之和为:故选:C.9、B【解析】按涂色顺序进行分四步,根据分步乘法计数原理可得解.【详解】按涂色顺序进行分四步:涂A部分时,有4种涂法;涂B部分时,有3种涂法;涂C部分时,有2种涂法;涂D部分时,有2种涂法.由分步乘法计数原理,得不同的涂色方法共有种.故选:B.10、A【解析】设5人分到的面包数量从小到大记为,设公差为,可得,,求出,根据等差数列的通项公式,得到关于关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为,设公差为,依题意可得,,,,解得,.故选:A.【点睛】本题以数学文化为背景,考查等差数列的前项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.11、A【解析】依据定义法去求动圆的圆心的轨迹即可解决.【详解】设动圆的半径为r,又圆半径为1,圆半径为8,则,,可得,又则动圆的圆心的轨迹是以为焦点长轴长为9的椭圆.故选:A12、C【解析】根据程序框图的循环逻辑写出执行步骤,即可确定输出结果.【详解】根据流程图的执行逻辑,其执行步骤如下:1、成立,则;2、成立,则;3、成立,则;4、成立,则;5、不成立,输出;故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据空间向量可得,结合计算即可.【详解】由题意知,,所以,解得.故答案:314、4【解析】由基本不等式及正实数、满足,可得的最大值.【详解】由基本不等式,可得正实数、满足,,可得,当且仅当时等号成立,故的最大值为,故答案为:4.15、##【解析】根据点与圆的位置关系求得正确答案.【详解】圆的方程可化为,所以圆心为,半径.由于,所以原点在圆外,所以最大值为.故答案为:16、【解析】设出半焦距c,用表示出椭圆的长半轴长、双曲线的实半轴长,由可得为直角三角形,由此建立关系即可计算作答.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,它们的半焦距为c,于是得,,由椭圆及双曲线的对称性知,不妨令焦点和在x轴上,点P在y轴右侧,由椭圆及双曲线定义得:,解得,,因,即,而O是线段的中点,因此有,则有,即,整理得:,从而有,即有,又,则有,即,解得,所以的取值范围是.故答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由频率之和为1求参数.(2)由分层抽样的比例可得抽取的5人中,和分别为:1人,2人,2人,再应用列举法写出所有基本事件,根据古典概型的概率计算即可.小问1详解】根据频率分布直方图得:,解得;【小问2详解】由于,和的频率之比为:,故抽取的5人中,,和别为:1人,2人,2人,记的1人为,的2人为,,的2人为,,故随机抽取2人共有,,,,,,,,,10种,其中至少有1人每天阅读时间位于的包含,,,,,,共7种,故概率.18、(1)(2)证明见解析【解析】(1)根据已知条件列方程组,解方程组求得,从而求得椭圆的标准方程.(2)设出直线的方程并与椭圆方程联立,由此求得,同理求得,从而化简求得直线的斜率为定值.【小问1详解】由题可知,解得,从而粚圆方程为.【小问2详解】证明设直线的斜率为,则,,联立直线与椭圆的方程,得,整理得,从而,于是,由题意得直线的斜率为,则,,同理可求得,于是即直线的斜率为定值.19、(1)或(2)【解析】(1)利用正弦定理边化角,然后可解;(2)利用余弦定理求出c,然后检验可得.【小问1详解】,即或【小问2详解】因为是锐角三角形,所以因为所以由余弦定理得:即,解得或若,则,所以,不满足题意;若,因为,且,所以,此时是锐角三角形.所以.20、(1)函数的单调递减区间为,单调递增区间为,(2)【解析】(1)利用导数求得的单调区间.(2)利用导数研究的单调性、极值,从而求得的值.【小问1详解】由,得,令,得或;令,得.∴函数的单调递减区间为,单调递增区间为,.【小问2详解】∵,∴.当时,;当时,∴的单调递减区间为,;单调递增区间为.∴的极小值为,极大值为.当时,;当时,.又∵函数有且仅有2个零点,∴实数的值为.21、(1);(2)证明见解析,(-5,0).【解析】(1)写出A、B、F的坐标,求出向量坐标,根据向量的关系即可列出方程组,求得a、b、c和椭圆的标准方程;(2)设直线l的方程为y=kx+m,,.联立直线l与椭圆方程,根据韦达定理得到根与系数的关系,求出,根据即可求得k和m的关系,即可证明直线过定点并求出该定点.【小问1详解】由题意,知A(-a,0),B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心血管疾病甲基化风险评估模型
- 心脏移植供体分配的伦理审查时效性提升
- 心脏基因编辑个体化治疗策略优化
- 心理行为干预在慢病防控中的作用
- 微创治疗脑胶质瘤:超声吸引与神经内镜协同
- 2025年国画装裱施工合同协议
- 建筑工人肌肉骨骼疾病职业培训效果
- 康复治疗师职业健康与患者康复效果及组织承诺的关系
- 康复医学临床带教能力提升方案
- 应急响应时间管理基层优化策略
- 《DLT 587-2025继电保护和安全自动装置运行管理规程》专题研究报告深度解读
- 上海国盛证券股份有限公司招聘笔试题库2026
- 日本赛车行业现状分析报告
- 居间入股合同范本
- 2025年支行行长述职报告
- 劳务协议合同协议
- 仪表事故现场处理方案
- 夜间焊接施工方案(3篇)
- 大学生创业设计指导 课件 项目一 路演敲开创业之门
- 羊寄生虫综合防控技术规范
- 2023-2024学年人教部编版统编版九年级上学期历史期末模拟试卷(含答案解析)
评论
0/150
提交评论