辽宁省瓦房店市2026届高一上数学期末复习检测模拟试题含解析_第1页
辽宁省瓦房店市2026届高一上数学期末复习检测模拟试题含解析_第2页
辽宁省瓦房店市2026届高一上数学期末复习检测模拟试题含解析_第3页
辽宁省瓦房店市2026届高一上数学期末复习检测模拟试题含解析_第4页
辽宁省瓦房店市2026届高一上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省瓦房店市2026届高一上数学期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则a,b,c大小关系为()A. B.C. D.2.已知A(3,1),B(-1,2),若∠ACB的平分线方程为y=x+1,则AC所在的直线方程为()A.y=2x+4 B.y=x-3C.x-2y-1=0 D.3x+y+1=03.设,为平面向量,则“存在实数,使得”是“向量,共线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知实数,,且,则的最小值为()A. B.C. D.5.已知,,且,则的最小值为()A. B.C.2 D.16.已知某种树木的高度(单位:米)与生长年限t(单位:年,)满足如下的逻辑斯谛(Logistic)增长模型:,其中为自然对数的底数,设该树栽下的时刻为0,则该种树木生长至3米高时,大约经过的时间为()A.2年 B.3年C.4年 D.5年7.已知y=(x-m)(x-n)+2022(m<n),且α,β(α<β)是方程y=0的两根,则α,β,m,n的大小关系是()A.α<m<n<β B.m<α<n<βC.m<α<β<n D.α<m<β<n8.cos600°值等于A. B.C. D.9.已知函数的值域为R,则a的取值范围是()A. B.C. D.10.已知集合,,若,则的子集个数为A.14 B.15C.16 D.32二、填空题:本大题共6小题,每小题5分,共30分。11.函数的零点是___________.12.计算=_______________13.集合的子集个数为______14.在中,,BC边上的高等于,则______________15.如果,且,则化简为_____.16.将函数图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(I)证明:AM⊥PM;(II)求二面角P-AM-D的大小.18.如图甲,直角梯形中,,,为的中点,在上,且,现沿把四边形折起得到空间几何体,如图乙.在图乙中求证:(1)平面平面;(2)平面平面.19.已知集合,,.(Ⅰ)求,;(Ⅱ)若,求实数的取值范围.20.已知函数的部分图象如图所示.(1)求函数的解析式和单调增区间;(2)将函数的图象向左平移个单位,再将图象上各点的横坐标伸长到原来的倍(纵坐标不变)得到函数的图象,若关于的方程在区间上有两个不同的解、,求的值及实数的取值范围.21.已知函数,,且求实数m的值;作出函数的图象并直接写出单调减区间若不等式在时都成立,求t的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用有理指数幂和幂函数的单调性分别求得,,的范围即可得答案【详解】,,,又在上单调递增,,,故选:C2、C【解析】设点A(3,1)关于直线的对称点为,则,解得,即,所以直线的方程为,联立解得,即,又,所以边AC所在的直线方程为,选C.点睛:本题主要考查了直线方程的求法,属于中档题.解题时要结合实际情况,准确地进行求解3、A【解析】结合充分条件和必要条件的概念以及向量共线即可判断.【详解】充分性:由共线定理即可判断充分性成立;必要性:若,,则向量,共线,但不存在实数,使得,即必要性不成立.故选:A.4、C【解析】由题可得,则由展开利用基本不等式可求.【详解】,,且,则,,当且仅当时,等号成立,故的最小值为.故选:C.5、A【解析】由已知条件得出,再将代数式与相乘,展开后利用基本不等式可求得的最小值.【详解】已知,且,,由基本不等式可得,当且仅当时,等号成立,因此,的最小值为.故选:A.【点睛】本题考查利用基本不等式求代数式的最值,考查的妙用,考查计算能力,属于基础题.6、C【解析】根据题意,列方程,即可求解.【详解】由题意可得,令,即,解得:t=4.故选:C7、C【解析】根据二次函数的性质判断【详解】记,由题意,,的图象是开口向上的抛物线,所以上递减,在上递增,又,,所以,,即(也可由的图象向下平移2022个单位得的图象得出判断)故选:C8、B【解析】利用诱导公式化简即可得到结果.【详解】cos600°故选B【点睛】本题考查利用诱导公式化简求值,考查特殊角的三角函数值,属于基础题.9、D【解析】首先求出时函数的值域,设时,的值域为,依题意可得,即可得到不等式组,解得即可;【详解】解:由题意可得当时,所以的值域为,设时,的值域为,则由的值域为R可得,∴,解得,即故选:D10、C【解析】根据集合的并集的概念得到,集合的子集个数有个,即16个故答案为C二、填空题:本大题共6小题,每小题5分,共30分。11、和【解析】令y=0,直接解出零点.【详解】令y=0,即,解得:和故答案为:和【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解12、【解析】原式考点:三角函数化简与求值13、32【解析】由n个元素组成的集合,集合的子集个数为个.【详解】解:由题意得,则A的子集个数为故答案为:32.14、.【解析】设边上的高为,则,求出,.再利用余弦定理求出.【详解】设边上的高为,则,所以,由余弦定理,知故答案为【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平,属于基础题.15、【解析】由,且,得到是第二象限角,由此能化简【详解】解:∵,且,∴是第二象限角,∴故答案为:16、.【解析】由题意利用函数的图象变换规律,即可得出结论.【详解】将函数图象上所有的点向右平行移动个单位长度,可得函数为,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),可得函数为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)45°.【解析】(Ⅰ)以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系,求出与的坐标,利用数量积为零,即可证得结果;(Ⅱ)求出平面PAM与平面ABCD的法向量,代入公式即可得到结果.【详解】(I)证明:以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系,依题意,可得∴∴即,∴AM⊥PM.(II)设,且平面PAM,则,即∴,取,得;取,显然平面ABCD,∴,结合图形可知,二面角P-AM-D为45°.【点睛】空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18、(1)证明见解析(2)证明见解析【解析】(1)证明出平面,平面,利用面面垂直的判定定理可证得结论成立;(2)证明出平面,可得出平面,利用面面垂直的判定定理可证得结论成立.【小问1详解】证明:翻折前,,翻折后,则有,,因为平面,平面,平面,因为平面,平面,平面,因为,因此,平面平面.【小问2详解】证明:翻折前,在梯形中,,,则,,则,翻折后,对应地,,,因为,所以,平面,,则平面,平面,因此,平面平面.19、(1)(2)或.【解析】(Ⅰ)由交并补集定义可得;(Ⅱ),说明有公共元素,由这两个集合的形式,知或即可.试题解析:(Ⅰ),,,又,;(Ⅱ)若,则需或,解得或.20、(1),增区间为;(2),.【解析】(1)结合图象和,求得的值,再根据,,求得的解析式,然后利用正弦函数的单调性,即可得解;(2)根据函数图象的变换法则写出的解析式,再结合正弦函数的对称性以及图象,即可得解.【小问1详解】解:设的最小正周期为,由图象可知,则,故,又,所以,即,所以,所以,因为,所以,所以,所以,所以,令,则,故的单调增区间为.【小问2详解】解:将函数的图象向左平移个单位,再将图象上各点的横坐标伸长到原来的倍(纵坐标不变),得的图象,由,知,由可得,由可得,若关于的方程在区间上有两个不同的解、,则点、关于直线对称,故,所以,,作出函数与函数在区间上的图象如下图所示:由图可知,当时,即当时,函数与函数在区间上的图象有两个交点.综上所述,,实数的取值范围是.21、(1)(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论