版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七年级数学试卷七年级苏科下册期末专题练习(附答案)一、幂的运算易错压轴解答题1.我们知道,同底数幂的乘法法则为:(其中a≠0,m,n为正整数),类似地,我们规定关于任意正整数m,n的一种新运算:h(m+n)=请根据这种新运算填空:(1)若h(1)=,则h(2)=________.(2)若h(1)=k(k≠0),那么________(用含n和k的代数式表示,其中n为正整数)2.综合题
(1)填空:21﹣20=2(________),22﹣21=2(________),23﹣22=2(________)…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)运用上述规律计算:20﹣21﹣22﹣…﹣22017+22018。3.阅读理解:乘方的定义可知:an=a×a×a×…×a(n个a相乘).观察下列算式回答问题:32×35=(3×3)×(3×3×3×3×3)=3×3×…×3=37(7个3相乘)42×45=(4×4)×(4×4×4×4×4)=4×4×…×4=47(7个4相乘)52×55=(5×5)×(5×5×5×5×5)=5×5×…×5=57(7个5相乘)(1)20172×20175=________;(2)m2×m5=________;(3)计算:(﹣2)2016×(﹣2)2017.二、平面图形的认识(二)压轴解答题4.如图,在中,,点D在上,又在的垂直平分线l上,点E在的延长线上,点F在上,.(1)试说明:.(2)若平分,求的度数.5.如图,现有一块含有30°的直角三角板ABC,且l1∥l2,其中∠ABC=30°。(1)如图(1),当直线l1和l2分别过三角板ABC的两个顶点时,且∠1=35°,则∠2=________°(2)如图(2),当∠ADE=80°时,求∠GFB的度数。(3)如图(3),点Q是线段CD上的一点,当∠QFC=2∠CFN时,请判断∠ADE和∠QFG的数量关系,并说出理由。6.如图①,将两个边长为1的小正方形分别沿对角线剪开,拼成正方形ABCD.(1)正方形ABCD的面积为________,边长为________,对角线BD=________;(2)求证:;(3)如图②,将正方形ABCD放在数轴上,使点B与原点O重合,边AB落在x轴的负半轴上,则点A所表示的数为________,若点E所表示的数为整数,则点E所表示的数为________三、整式乘法与因式分解易错压轴解答题7.好学小东同学,在学习多项式乘以多项式时发现:(
x+4)(2x+5)(3x-6)的结果是一个多项式,并且最高次项为:
x•2x•3x=3x3,常数项为:4×5×(-6)=-120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:×5×(-6)+2×(-6)×4+3×4×5=-3,即一次项为-3x.请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算(x+2)(3x+1)(5x-3)所得多项式的一次项系数为________.(2)(x+6)(2x+3)(5x-4)所得多项式的二次项系数为________.(3)若计算(x2+x+1)(x2-3x+a)(2x-1)所得多项式不含一次项,求a的值;(4)若(x+1)2021=a0x2021+a1x2020+a2x2019+···+a2020x+a2021,则a2020=________.8.如图1,有A型、B型正方形卡片和C型长方形卡片各若干张.(1)用1张A型卡片,1张B型卡片,2张C型卡片拼成一个正方形,如图2,用两种方法计算这个正方形面积,可以得到一个等式,请你写出这个等式________;(2)选取1张A型卡片,10张C型卡片,________张B型卡片,可以拼成一个正方形,这个正方形的边长用含a,b的代数式表示为________;(3)如图3,两个正方形边长分别为m、n,m+n=10,mn=19,求阴影部分的面积.9.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a²+5ab+2b²可以因式分解为________.(2)若图中阴影部分的面积为242平方厘米,大长方形纸板的周长为78厘米,求图中空白部分的面积.四、二元一次方程组易错压轴解答题10.已知关于x,y的二元一次方程组(a为实数).(1)若方程组的解始终满足y=a+1,求a的值.(2)己知方程组的解也是方程bx+3y=1(b为实数,b≠0且b≠-6)的解.①探究实数a,b满足的关系式.②若a,b都是整数,求b的最大值和最小值.11.为了响应“绿水青山就是金山银山”的环保建设,提高企业的治污能力某大型企业准备购买A,B两种型号的污水处理设备共8台,若购买A型设备2台,B型设备3台需34万元;购买A型设备4台,B型设备2台需44万元.(1)求A,B两种型号的污水处理设备的单价各是多少?(2)已知一台A型设备一个月可处理污水220吨,B型设备一个月可处理污水190吨,若该企业每月处理的污水不低于1700吨,请你为该企业设计一种最省钱的购买方案.12.已知为三个非负数,且满足(1)用含的代数式分别表示得(2)若求S的最小值和最大值.五、一元一次不等式易错压轴解答题13.如图,正方形ABCD的边长是2厘米,E为CD的中点.Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,最终到达点D,若点Q运动时间为x秒(1)当x=时,S△AQE=________平方厘米;当x=时,S△AQE=________平方厘米(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求x的取值范围。(3)若△AQE的面积为平方厘米,直接写出x值14.定义:对于实数a,符号表示不大于a的最大整数,例如:.(1)如果,求a的取值范围;(2)如果,求满足条件的所有整数x.15.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜2个、乙种书柜3个,共需资金1020元;若购买甲种书柜3个,乙种书柜4个,共需资金1440元(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,学校至多能够提供资金3800元,请设计几种购买方案供这个学校选择.(两种规格的书柜都必须购买)【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)49(2)kn+2017【解析】【解答】(1)∵h(1)=23,∴h(2)=h(1+1)=h(1)h(1)=23×23=49(2)∵h(1)=k(k≠0),h(m+n)=解析:(1)(2)kn+2017【解析】【解答】(1)∵h(1)=,∴h(2)=h(1+1)=h(1)h(1)=×=(2)∵h(1)=k(k≠0),h(m+n)=h(m)•h(n)∴h(n)•h(2017)=kn•k2017=kn+2017故答案为:;kn+2017【分析】(1)根据新定义运算,先将h(2)转化为h(1+1),再根据h(m+n)=h(m)•h(n),即可得出答案。(2)根据h(1)=k(k≠0),及新定义的运算,将原式变形为kn•k2017,再利用同底数幂的乘法法则计算即可。2.(1)0;1;2(2)解:2n-2n-1=2n-1(21-20)=2n-1(3)解:原式=20﹣(21+22+…+22017)+22018设
:S=21+22+…+22017,则2S=22解析:(1)0;1;2(2)解:2n-2n-1=2n-1(21-20)=2n-1(3)解:原式=20﹣(21+22+…+22017)+22018设
:S=21+22+…+22017,则2S=22+23…+22018S=2S-S=22+23…+22018-(21+22+…+22017)=22018-21∴原式=20-22018+21+22018=3【解析】【分析】(1)利用同底数幂的乘法法则的逆用及乘法分配律的逆用即可得出答案;(2)通过观察,每一个减法算式的被减数及减数都是幂的形式,底数都是2,被减数的指数与式子的序号一致,减数的指数比被减数的指数小1;计算的结果也是幂的形式,底数是2,指数比序号小1,利用发现的规律即可得出答案;(3)首先将原式变形为20﹣(21+22+…+22017)+22018,然后设
:S=21+22+…+22017,则2S=22+23…+22018,S=2S-S=22+23…+22018-(21+22+…+22017)=22018-21,再代入原式即可得出答案。3.(1)20177(2)m7(3)解:(﹣2)2016×(﹣2)2017=(﹣2)2016+2017=(﹣2)4033=﹣24033【解析】【解答】解:(1)20172×20175=20解析:(1)20177(2)m7(3)解:(﹣2)2016×(﹣2)2017=(﹣2)2016+2017=(﹣2)4033=﹣24033【解析】【解答】解:(1)20172×20175=20177,故答案为:20177;(2)m2×m5=m7,故答案为:m7;【分析】(1)根据同底数幂的乘法可以解答本题;(2)根据同底数幂的乘法可以解答本题;(3)根据同底数幂的乘法可以解答本题.二、平面图形的认识(二)压轴解答题4.(1)解:∵点在的垂直平分线l上,∴,∴,在和中,,,,∴(2)解:∵,∴,∵平分,,∴,∴,∵,∴,由(1)知,,∴,∵,∴【解析】【分析】(1)利用垂直平分线上的点到线段两端点的距离相等,可证得AD=CD;再利用等边对等角可证得∠DAC=∠DCA;然后利用SAS可证得结论。(2)利用等边对等角可证得∠ABC=∠ACB,利用角平分线的定义去证明∠ACD=∠DAC=∠BCD;再求出△ABC的三个内角的度数,利用全等三角形的性质就可求出∠ABF=∠CAE=∠DAE+36°;然后利用∠ABC=72°,可求出∠ABF+∠FBC的值。5.(1)55(2)解:如图,过点C作l1的平行线交AB于N。∵CN∥l1∴∠1=∠DCN
同理∠2=∠NCF∴∠GFB=∠2=90°-∠1=90°-∠1=90°-∠ADE=10°(3)解:3∠ADE=∠QFG+90°由(2)可知:∠ADE+∠CFN=∠C=90°设∠CFN=x,则∠QFC=2x∴∠ADE=90°-x,∠QFG=180°-3x∴3∠ADE=∠QFG+90°【解析】【解答】(1)∵l1∥l2,∴∠2+∠CAB+∠ABC+∠1=180°,∵∠CAB+∠ABC=90°,∠1=35°∴∠2=55°;【分析】(1)根据两直线平行同旁内角互补,可得∠2+∠CAB+∠ABC+∠1=180°,根据直角三角形的性质可得∠CAB+∠ABC=90°,从而求出∠2的度数;(2)如图,过点C作l1的平行线交AB于N,可得CN∥l1∥l2,从而可得∠1=∠DCN,∠2=∠NCF
,∠GFB=∠2,由∠GFB=∠2=90°-∠1=90°-∠1=90°-∠ADE,据此即可求出结论;(3)结论3∠ADE=∠QFG+90°
.理由:由(2)可知:∠ADE+∠CFN=∠C=90°
,设∠CFN=x,则∠QFC=2x,从而可得∠ADE=90°-x,∠QFG=180°-3x,据此即得结论.6.(1)2;;2(2)小正方形的面积
由拼接可得:
大正方形的面积,
(3);-1【解析】【解答】解:(1)由图形拼接不改变面积可得:正方形ABCD=由边长是面积的算术平方根可得:正方形ABCD的边长为
由拼接可得
大正方形的面积
(负根舍去)(3)由(1)知:在数轴负半轴上,点表示在O,A之间且表示整数,表示-1【分析】(1)由图形拼接不改变面积,边长是面积的算术平方根,以及勾股定理可得答案,(2)利用变形前后面积不变证明,(3)由的长度结合的位置直接得到答案,再利用数轴上数的大小分布得到表示的数.三、整式乘法与因式分解易错压轴解答题7.(1)-11(2)63.5(3)由题意可得(x2+x+1)(x2-3x+a)(2x-1)一次项系数是:1×a×(-1)+(-3)×1×(-1)+2×1×a=a+3=0∴a=-3.解析:(1)-11(2)63.5(3)由题意可得(x2+x+1)(x2-3x+a)(2x-1)一次项系数是:1×a×(-1)+(-3)×1×(-1)+2×1×a=a+3=0∴a=-3.(4)2021.【解析】【解答】解:(1)由题意可得(x+2)(3x+1)(5x-3)一次项系数是:1×1×(-3)+3×2×(-3)+5×2×1=-11.(2)由题意可得(
x+6)(2x+3)(5x-4)二次项系数是:.(4)通过题干以及前三问可知:一次项系数是每个多项式的一次项分别乘以其他多项式常数项然后结果相加可得.所以(x+1)2021一次项系数是:a2020=2021×1=2021.【分析】(1)求一次项系数,用每个括号中一次项的系数分别与另外两个括号中的常数项相乘,最后积相加即可得出结论.(2)求二次项系数,还有未知数的项有x、2x、5x,选出其中两个与另一个括号内的常数项相乘,最后积相加即可得出结论.(3)先根据(1)(2)所求方法求出一次项系数,然后列出等式求出a的值.(4)根据前三问的规律即可计算出第四问的值.8.(1)(a+b)2=a2+b2+2ab(2)25;a+5b(3)解:阴影部分的面积为则阴影部分的面积为=432答:阴影部分的面积为432.【解析】【解答解析:(1)(2)25;(3)解:阴影部分的面积为则阴影部分的面积为答:阴影部分的面积为.【解析】【解答】(1)方法一:这个正方形的边长为,则其面积为方法二:这个正方形的面积等于两个小正方形的面积与两个长方形的面积之和则其面积为因此,可以得到一个等式故答案为:;(2)设选取x张B型卡片,x为正整数由(1)的方法二得:拼成的正方形的面积为由题意得:是一个完全平方公式则因此,拼成的正方形的面积为所以其边长为故答案为:25,;【分析】(1)方法一:先求出这个正方形的边长,再利用正方形的面积公式即可得;方法二:这个正方形的面积等于两个小正方形的面积与两个长方形的面积之和即可得;然后根据方法一与方法二的面积相等可得出所求的等式;(2)设选取x张B型卡片,根据(1)中的方法二求出拼成的正方形的面积,然后利用完全平方公式即可求出x的值,最后根据正方形的面积公式即可得其边长;(3)先利用阴影部分的面积等于大正方形的面积减去两个直角三角形的面积求出阴影部分的面积,再利用完全平方公式进行变形,然后将已知等式的值代入求解即可.9.(1)(a+2b)(2a+b)(2)解:由已知得:
{2(a2+b2)=2426a+6b=78
化简得
②平方的:化简得:将①代入③得到:ab=24∴空白部分的面积为解析:(1)(a+2b)(2a+b)(2)解:由已知得:
化简得
②平方的:化简得:将①代入③得到:ab=24∴空白部分的面积为5ab=120()【解析】【解答】(1)2a²+5ab+2b²=(a+2b)(2a+b)解:由已知得:
化简得
∴
∴ab=24∴空白部分的面积为5ab=120(平分厘米)【分析】(1)利用等面积法即可得到答案。图中大长方形的面积可以用面积公式S=长×宽=(a+2b)(2a+b),也可以看成是2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形组成,即S=2a²+5ab+2b²,所以2a²+5ab+2b²=(a+2b)(2a+b);(2)图中阴影部分的面积为
、大长方形纸板的周长为、根据题意联立方程解得ab,即可得到空白部分的面积6ab.四、二元一次方程组易错压轴解答题10.(1)解:将方程组②-①,得3y=6a-3∴y=2a-1∵y=a+1∴2a-1=a+1∴a=2(2)解:①将y=2a-1代入方程①,可得x=a+2∴方程组的解为{x=a+2y=解析:(1)解:将方程组②-①,得3y=6a-3∴y=2a-1∵y=a+1∴2a-1=a+1∴a=2(2)解:①将y=2a-1代入方程①,可得x=a+2∴方程组的解为∵方程组的解也是方程bx+3y=1的解∴b(a+2)+3(2a-1)=1∴ab+6a+2b=4②由ab+6a+2b=4可得b=∴b=∵a,b都是整数∴a+2=±1,±2,±4,±8,±16∴当a+2=1时,b有最大值10;当a+2=-1时,b有最小值-22【解析】【分析】(1)把a看成已知数,解关于x、y的方程组,解得y用a来表示,再将已知式y=a+1代入解得a的值即可。(2)①将y=2a-1代入方程①,使x也用a来表示,
将x、y的值代入bx+3y=1中,则a、b的关系式可求。
②要求b的最大值和最小值,将a、b的关系式变形,使b用a来表示,因为a、b都是整数,根据整数的特点,把b的关系式变形,使分子不含有字母,以便取整数。列出所有符合条件的a+2值,找出b的最大值和最小值即可。11.(1)解:设A型、B型污水处理设备的单价分别为x万元、y万元,{2x+3y=344x+2y=44,解得,{x=8y=6,答:A型、B型污水处理设备的单价分别为8万元、6万元(解析:(1)解:设A型、B型污水处理设备的单价分别为x万元、y万元,,解得,,答:A型、B型污水处理设备的单价分别为8万元、6万元(2)解:设购买A型污水处理设备a台,则购买B型污水处理设备(8﹣a)台,根据题意可得:220a+190(8﹣a)≥1700,解得:a≥6,又∵A型污水处理价格高,∴A型污水处理买的越少总费用越低,∴当购买A型污水处理6台,则购买B型污水处理2台时,总费用最低【解析】【分析】(1)设A型、B型污水处理设备的单价分别为x万元、y万元,
根据“总费用=A型设备数量×A型设备单价+B型设备数量×B型设备单价",
结合费用为34万元和44万元两种情况分别列方程,组成二元一次方程组求解即可;(2)设购买A型污水处理设备a台,
根据“总费用=A型设备数量×A型设备单价+B型设备数量×B型设备单价≥1700
",列不等式,求出a的范围为a≥6;由于A型设备的单价较高,所以A型污水处理买的越少总费用越低,
由此可得当购买A型污水处理6台,则购买B型污水处理2台时,为总费用最低的方案。12.(1)z-10|-2z+40(2)解:∵x=z-10,y=-2z+40;∴S=3(z-10)+2(-2z+40)+5z=4z+50,∵x,y,z为三个非负实数,∴z-10≥0,-2z解析:(1)z-10|-2z+40(2)解:∵x=z-10,y=-2z+40;∴S=3(z-10)+2(-2z+40)+5z=4z+50,∵x,y,z为三个非负实数,∴z-10≥0,-2z+40≥0,z≥0,∴10≤z≤20,当z=20时,S有最大值,最大值=40+50=130,当z=10时,S有最小值,最小值=40+50=90.【解析】【解答】(1),①×3-②得3x-2x+3z-4z=-10,解得x=z-10,①×2-②得2y-3y+2z-4z=-40,解得y=-2z+40;故答案为:z-10,-2z+40;【分析】(1)把看作为关于x和y的二元一次方程组,然后利用加减消元法可得到x=z-10,y=-2z+40;(2)把x=z-10,y=-2z+40代入s=3x+2y+5z中得S=4z+50,再根据x,y,z为三个非负实数,即z-10≥0,-2z+40≥0,z≥0,解得10≤z≤20,然后根据一次函数的性质求解.五、一元一次不等式易错压轴解答题13.(1)12;32(2)解:由题意,得解得(3)解:x=13;x=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年山东圣翰财贸职业学院马克思主义基本原理概论期末考试模拟试卷
- 2025年广东茂名健康职业学院马克思主义基本原理概论期末考试真题汇编
- 哮喘中医辩证案例分享
- 外科营养失调护理措施
- 胎儿宫内窘迫病人护理
- 2025年中级经济师《管理知识》真题试卷解析
- 医院医疗质量提升工作总结报告
- 服装生产企业工艺流程分析报告
- 2023年工程监理单位监督管理制度更新
- 2026年直播带货运营医美项目直播推广调研
- 2025岚图汽车社会招聘(公共基础知识)测试题附答案
- 2026年安全员考试题库300道附完整答案【必刷】
- 小说阅读专题复习(部编版六年级)
- DLT1249-2013 架空输电线路运行状态评估技术导则
- 液压升降平台安装施工方案
- 心房钠尿肽基因敲除小鼠的繁殖和鉴定
- 母婴护理职业道德课件
- 安全通道防护棚计算书
- 中文介绍迈克尔杰克逊
- 安徽金轩科技有限公司 年产60万吨硫磺制酸项目环境影响报告书
- 厦深铁路福建段某标段工程投标施工组织设计
评论
0/150
提交评论