版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省攀枝花市2026届高三数学第一学期期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A. B. C. D.2.如图,是圆的一条直径,为半圆弧的两个三等分点,则()A. B. C. D.3.已知双曲线的一条渐近线方程是,则双曲线的离心率为()A. B. C. D.4.已知等差数列的公差为,前项和为,,,为某三角形的三边长,且该三角形有一个内角为,若对任意的恒成立,则实数().A.6 B.5 C.4 D.35.已知数列的前项和为,且,,则()A. B. C. D.6.已知为等差数列,若,,则()A.1 B.2 C.3 D.67.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()A.2 B.5 C. D.8.从抛物线上一点(点在轴上方)引抛物线准线的垂线,垂足为,且,设抛物线的焦点为,则直线的斜率为()A. B. C. D.9.已知整数满足,记点的坐标为,则点满足的概率为()A. B. C. D.10.已知随机变量服从正态分布,且,则()A. B. C. D.11.某四棱锥的三视图如图所示,记为此棱锥所有棱的长度的集合,则().A.,且 B.,且C.,且 D.,且12.方程在区间内的所有解之和等于()A.4 B.6 C.8 D.10二、填空题:本题共4小题,每小题5分,共20分。13.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将地区200家实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为,中位数为n,则_________.14.在平面直角坐标系中,若双曲线(,)的离心率为,则该双曲线的渐近线方程为________.15.已知实数a,b,c满足,则的最小值是______.16.根据如图所示的伪代码,若输出的的值为,则输入的的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角的对边分别为,若(1)求角的大小(2)若,求的周长18.(12分)在某社区举行的2020迎春晚会上,张明和王慧夫妻俩参加该社区的“夫妻蒙眼击鼓”游戏,每轮游戏中张明和王慧各蒙眼击鼓一次,每个人击中鼓则得积分100分,没有击中鼓则扣积分50分,最终积分以家庭为单位计分.已知张明每次击中鼓的概率为,王慧每次击中鼓的概率为;每轮游戏中张明和王慧击中与否互不影响,假设张明和王慧他们家庭参加两轮蒙眼击鼓游戏.(1)若家庭最终积分超过200分时,这个家庭就可以领取一台全自动洗衣机,问张明和王慧他们家庭可以领取一台全自动洗衣机的概率是多少?(2)张明和王慧他们家庭两轮游戏得积分之和的分布列和数学期望.19.(12分)已知数列满足:对任意,都有.(1)若,求的值;(2)若是等比数列,求的通项公式;(3)设,,求证:若成等差数列,则也成等差数列.20.(12分)椭圆的左、右焦点分别为,椭圆上两动点使得四边形为平行四边形,且平行四边形的周长和最大面积分别为8和.(1)求椭圆的标准方程;(2)设直线与椭圆的另一交点为,当点在以线段为直径的圆上时,求直线的方程.21.(12分)如图,在长方体中,,为的中点,为的中点,为线段上一点,且满足,为的中点.(1)求证:平面;(2)求二面角的余弦值.22.(10分)如图,直线y=2x-2与抛物线x2=2py(p>0)交于M1,M2两点,直线y=p2与(1)求p的值;(2)设A是直线y=p2上一点,直线AM2交抛物线于另一点M3,直线M1M
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,,所以椭圆的方程为.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.2、B【解析】
连接、,即可得到,,再根据平面向量的数量积及运算律计算可得;【详解】解:连接、,,是半圆弧的两个三等分点,,且,所以四边形为棱形,.故选:B【点睛】本题考查平面向量的数量积及其运算律的应用,属于基础题.3、D【解析】双曲线的渐近线方程是,所以,即,,即,,故选D.4、C【解析】
若对任意的恒成立,则为的最大值,所以由已知,只需求出取得最大值时的n即可.【详解】由已知,,又三角形有一个内角为,所以,,解得或(舍),故,当时,取得最大值,所以.故选:C.【点睛】本题考查等差数列前n项和的最值问题,考查学生的计算能力,是一道基础题.5、C【解析】
根据已知条件判断出数列是等比数列,求得其通项公式,由此求得.【详解】由于,所以数列是等比数列,其首项为,第二项为,所以公比为.所以,所以.故选:C【点睛】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题.6、B【解析】
利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出.【详解】∵{an}为等差数列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故选:B.【点睛】本题考查等差数列通项公式求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.7、D【解析】
根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,,,故最大面的面积为.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.8、A【解析】
根据抛物线的性质求出点坐标和焦点坐标,进而求出点的坐标,代入斜率公式即可求解.【详解】设点的坐标为,由题意知,焦点,准线方程,所以,解得,把点代入抛物线方程可得,,因为,所以,所以点坐标为,代入斜率公式可得,.故选:A【点睛】本题考查抛物线的性质,考查运算求解能力;属于基础题.9、D【解析】
列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率.【详解】因为是整数,所以所有满足条件的点是位于圆(含边界)内的整数点,满足条件的整数点有共37个,满足的整数点有7个,则所求概率为.故选:.【点睛】本题考查了古典概率的计算,意在考查学生的应用能力.10、C【解析】
根据在关于对称的区间上概率相等的性质求解.【详解】,,,.故选:C.【点睛】本题考查正态分布的应用.掌握正态曲线的性质是解题基础.随机变量服从正态分布,则.11、D【解析】
首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长.【详解】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:,,.故选:D..【点睛】本题考查三视图和几何体之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题.12、C【解析】
画出函数和的图像,和均关于点中心对称,计算得到答案.【详解】,验证知不成立,故,画出函数和的图像,易知:和均关于点中心对称,图像共有8个交点,故所有解之和等于.故选:.【点睛】本题考查了方程解的问题,意在考查学生的计算能力和应用能力,确定函数关于点中心对称是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、360【解析】
先计算第一块小矩形的面积,第二块小矩形的面积,,面积和超过0.5,所以中位数在第二块求解,然后再求得平均数作差即可.【详解】第一块小矩形的面积,第二块小矩形的面积,故;而,故.故答案为:360.【点睛】本题考查频率分布直方图、样本的数字特征,考查运算求解能力以及数形结合思想,属于基础题.14、【解析】
利用,解出,即可求出双曲线的渐近线方程.【详解】,且,,,该双曲线的渐近线方程为:.故答案为:.【点睛】本题考查了双曲线离心率与渐近线方程,考查了双曲线基本量的关系,考查了运算能力,属于基础题.15、【解析】
先分离出,应用基本不等式转化为关于c的二次函数,进而求出最小值.【详解】解:若取最小值,则异号,,根据题意得:,又由,即有,则,即的最小值为,故答案为:【点睛】本题考查了基本不等式以及二次函数配方求最值,属于中档题.16、【解析】
算法的功能是求的值,根据输出的值,分别求出当时和当时的值即可得解.【详解】解:由程序语句知:算法的功能是求的值,当时,,可得:,或(舍去);当时,,可得:(舍去).综上的值为:.故答案为:.【点睛】本题考查了选择结构的程序语句,根据语句判断算法的功能是解题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)11【解析】
(1)利用二倍角公式将式子化简成,再利用两角和与差的余弦公式即可求解.(2)利用余弦定理可得,再将平方,利用向量数量积可得,从而可求周长.【详解】由题解得,所以由余弦定理,,再由解得:所以故的周长为【点睛】本题主要考查了余弦定理解三角形、两角和与差的余弦公式、需熟记公式,属于基础题.18、(1)(2)详见解析【解析】
(1)要积分超过分,则需两人共击中次,或者击中次,由此利用相互独立事件概率计算公式,计算出所求概率.(2)求得的所有可能取值,根据相互独立事件概率计算公式,计算出分布列并求得数学期望.【详解】(1)由题意,当家庭最终积分超过200分时,这个家庭就可以领取一台全自动洗衣机,所以要想领取一台全自动洗衣机,则需要这个家庭夫妻俩在两轮游戏中至少击中三次鼓.设事件为“张明第次击中”,事件为“王慧第次击中”,,由事件的独立性和互斥性可得(张明和王慧家庭至少击中三次鼓),所以张明和王慧他们家庭可以领取一台全自动洗衣机的概率是.(2)的所有可能的取值为-200,-50,100,250,400.,,,,.∴的分布列为-200-50100250400∴(分)【点睛】本小题考查概率,分布列,数学期望等概率与统计的基础知识;考查运算求解能力,推理论证能力,数据处理,应用意识.19、(1)3;(2);(3)见解析.【解析】
(1)依据下标的关系,有,,两式相加,即可求出;(2)依据等比数列的通项公式知,求出首项和公比即可。利用关系式,列出方程,可以解出首项和公比;(3)利用等差数列的定义,即可证出。【详解】(1)因为对任意,都有,所以,,两式相加,,解得;(2)设等比数列的首项为,公比为,因为对任意,都有,所以有,解得,又,即有,化简得,,即,或,因为,化简得,所以故。(3)因为对任意,都有,所以有,成等差数列,设公差为,,,,,由等差数列的定义知,也成等差数列。【点睛】本题主要考查等差、等比数列的定义以及赋值法的应用,意在考查学生的逻辑推理,数学建模,综合运用数列知识的能力。20、(1)(2)或【解析】
(1)根据题意计算得到,,得到椭圆方程.(2)设,联立方程得到,根据,计算得到答案.【详解】(1)由平行四边形的周长为8,可知,即.由平行四边形的最大面积为,可知,又,解得.所以椭圆方程为.(2)注意到直线的斜率不为0,且过定点.设,由消得,所以,因为,所以.因为点在以线段为直径的圆上,所以,即,所以直线的方程或.【点睛】本题考查了椭圆方程,根据直线和椭圆的位置关系求直线,将题目转化为是解题的关键.21、(1)证明见解析(2)【解析】
(1)解法一:作的中点,连接,.利用三角形的中位线证得,利用梯形中位线证得,由此证得平面平面,进而证得平面.解法二:建立空间直角坐标系,通过证明直线的方向向量和平面的法向量垂直,证得平面.(2)利用平面和平面法向量,计算出二面角的余弦值.【详解】(1)法一:作的中点,连接,.又为的中点,∴为的中位线,∴,又为的中点,∴为梯形的中位线,∴,在平面中,,在平面中,,∴平面平面,又平面,∴平面.另解:(法二)∵在长方体中,,,两两互相垂直,建立空间直角坐标系如图所示,则,,,,,,,,,,,.(1)设平面的一个法向量为,则,令,则,.∴,又,∵,,又平面,平面.(2)设平面的一个法向量为,则,令,则,.∴.同理可算得平面的一个法向量为∴,又由图可知二面角的平面角为一个钝角,故二面角的余弦值为.【点睛】本小题考查线面的位置关系,空间向量与线面角,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,数形结合思想,化归与转化思想.22、(1)p=4;(2)OA⋅【解析】试题分析:(1)联立直线的方程和抛物线的方程y=2x-2x2=2py,化简写出根与系数关系,由于直线y=p2平分∠M1FM2,所以kM1F+kM2F=0,代入点的坐标化简得4-(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 订购易合同范本
- 订车退车协议书
- 签订使用协议书
- 美国总统协议书
- 金店合作协议书
- 电厂工程协议书
- 2025 年大学食品质量与安全(食品标准)试题及答案
- 2025 年大学食品科学与工程(食品工艺)试题及答案
- 管理导师协议书
- 最购煤合同范本
- 《枫丹白露宫苑景观分析》课件
- 2023年上海市春考数学试卷(含答案)
- 中国石油大学(华东)自动控制课程设计 双容水箱系统的建模、仿真于控制-2
- 潘谢矿区西淝河、泥河、济河、港河水体下安全开采可行性论证报告
- 2023版押品考试题库必考点含答案
- 创业人生(上海大学)【超星尔雅学习通】章节答案
- GB/T 4957-2003非磁性基体金属上非导电覆盖层覆盖层厚度测量涡流法
- 钻井工程防漏堵漏技术演示文稿
- GB/T 2624.1-2006用安装在圆形截面管道中的差压装置测量满管流体流量第1部分:一般原理和要求
- 小儿癫痫的诊治现状课件
- 智慧能源-智慧能源管理平台建设方案
评论
0/150
提交评论