版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山西省浑源县第七中学数学高二上期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的离心率为,直线与椭圆交于两点,为坐标原点,且,则椭圆的方程为A B.C. D.2.已知点是椭圆上的任意点,是椭圆的左焦点,是的中点,则的周长为()A. B.C. D.3.已知事件A,B相互独立,,则()A.0.24 B.0.8C.0.3 D.0.164.已知椭圆方程为,点在椭圆上,右焦点为F,过原点的直线与椭圆交于A,B两点,若,则椭圆的方程为()A. B.C. D.5.如图,正三棱柱中,,则与平面所成角的正弦值等于()A. B.C. D.6.已知等比数列的前n项和为,,,则()A. B.C. D.7.已知双曲线,其渐近线方程为,则a的值为()A. B.C. D.28.如图,已知直线AO垂直于平面,垂足为O,BC在平面内,AB与平面所成角的大小为,,,则异面直线AB与OC所成角的余弦值为()A. B.C. D.9.若双曲线一条渐近线被圆所截得的弦长为,则双曲线的离心率是()A. B.C. D.10.在中,,,且BC边上的高为,则满足条件的的个数为()A.3 B.2C.1 D.011.已知向量,,且,则值是()A. B.C. D.12.若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线x+y=4上的概率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过椭圆的右焦点作两条相互垂直的直线m,n,直线m与椭圆交于A,B两点,直线n与椭圆交于C,D两点,若.则下列方程①;②;③;④.其中可以作为直线AB的方程的是______(写出所有正确答案的序号)14.已知为抛物线上的动点,,,则的最小值为________.15.已知锐角的内角,,的对边分别为,,,且.若,则外接圆面积的最小值为______16.已知圆C:和点,若点N为圆C上一动点,点Q为平面上一点且,则Q点纵坐标的最大值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列{an}中,a3+a4=15,a2a5=54,公差d<0.(1)求数列{an}的通项公式an;(2)求数列的前n项和Sn的最大值及相应的n值18.(12分)已知函数(Ⅰ)若的图象在点处的切线与轴负半轴有公共点,求的取值范围;(Ⅱ)当时,求的最值19.(12分)如图,在四棱锥中,四边形为平行四边形,且,,三角形为等腰直角三角形,且,.(1)若点为棱的中点,证明:平面平面;(2)若平面平面,点为棱的中点,求直线与平面所成角的正弦值.20.(12分)在等比数列{}中,(1),,求;(2),,求的值.21.(12分)如下图,已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于、两点,且、、三点互不重合(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值22.(10分)已知直线过坐标原点,圆的方程为(1)当直线的斜率为时,求与圆相交所得的弦长;(2)设直线与圆交于两点,,且为的中点,求直线的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据等腰直角三角形的性质可得,将代入椭圆方程,结合离心率为以及性质列方程组求得与的值,从而可得结果.【详解】设直线与椭圆在第一象限的交点为,因为,所以,即,由可得,,故所求椭圆的方程为.故选D.【点睛】本题主要考查椭圆的标准方程与性质,以及椭圆离心率的应用,意在考查对基础知识掌握的熟练程度,属于中档题.2、A【解析】设椭圆另一个焦点为,连接,利用中位线的性质结合椭圆的定义可求得结果.【详解】在椭圆中,,,,如图,设椭圆的另一个焦点为,连接,因为、分别为、的中点,则,则的周长为,故选:A.3、B【解析】利用事件独立性的概率乘法公式及条件概率公式进行求解.【详解】因为事件A,B相互独立,所以,所以故选:B4、A【解析】根据椭圆的性质可得,则椭圆方程可求.【详解】由点在椭圆上得,由椭圆的对称性可得,则,故椭圆方程为.故选:A.5、C【解析】取中点,连接,,证明平面,从而可得为与平面所成角,再利用三角函数计算的正弦值.【详解】取中点,连接,,在正三棱柱中,底面是正三角形,∴,又∵底面,∴,又,∴平面,∴为与平面所成角,由题意,,,在中,.故选:C6、A【解析】由,可得等比数列公比q=2,利用等比数列求和公式和通项公式即可求.【详解】设等比数列的公比为q,则,.故选:A.7、A【解析】由双曲线方程,根据其渐近线方程有,求参数值即可.【详解】由渐近线,结合双曲线方程,∴,可得.故选:A.8、B【解析】建立空间直角坐标系,求出相关点的坐标,求出向量的坐标,再利用向量的夹角公式计算即可.【详解】如图,以O为坐标原点,过点O作OB的垂线为x轴,OB为y轴,OA为z轴,建立空间直角坐标系,设,则,,则,,,,,设的夹角为,则,所以异面直线AB与OC所成角的余弦值为,故选:B.9、A【解析】根据(为弦长,为圆半径,为圆心到直线的距离),求解出的关系式,结合求解出离心率的值.【详解】取的一条渐近线,因为(为弦长,为圆半径,为圆心到直线的距离),其中,所以,所以,所以,所以,所以,故选:A.【点睛】关键点点睛:解答本题的关键是利用几何法表示出圆的半径、圆心到直线的距离、半弦长之间的关系.10、B【解析】利用等面积法求得,再利用正弦定理求得,利用内角和的关系及两角和差化积公式,二倍角公式转化为,再利用正弦函数的性质求满足条的的个数,即可求解.【详解】由三角形的面积公式知,即由正弦定理知所以,即,即,即利用两角和的正弦公式结合二倍角公式化简得又,则,,且由正弦函数的性质可知,满足的有2个,即满足条件的的个数为2.故选:B11、A【解析】求出向量,的坐标,利用向量数量积坐标表示即可求解.【详解】因为向量,,所以,,因为,所以,解得:,故选:A.12、D【解析】利用分布计数原理求出所有的基本事件个数,在求出点落在直线x+y=4上包含的基本事件个数,利用古典概型的概率个数求出.解:连续抛掷两次骰子出现的结果共有6×6=36,其中每个结果出现的机会都是等可能的,点P(m,n)在直线x+y=4上包含的结果有(1,3),(2,2),(3,1)共三个,所以点P(m,n)在直线x+y=4上的概率是3:36=1:12,故选D考点:古典概型点评:本题考查先判断出各个结果是等可能事件,再利用古典概型的概率公式求概率,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、①②【解析】①②结合椭圆方程得到与椭圆参数的关系,即可判断;③④联立直线与椭圆方程,利用弦长公式求,即可判断.【详解】由题设,且右焦点为,①时直线,故,则符合题设;②时,同①知:符合题设;③时直线,联立直线AB与椭圆方程并整理得:,则,同理可得,则,不合题设;④时,同③分析知:,不合题设;故答案为:①②.14、6【解析】根据抛物线的定义把的长转化为到准线的距离为,进而数形结合求出最小值.【详解】易知为抛物线的焦点,设到准线的距离为,则,而的最小值为到准线的距离,故的最小值为.故答案为:615、【解析】利用二倍角公式求出,即可得到,再利用余弦定理及基本不等式求出的取值范围,再利用正弦定理求出外接圆的半径,即可求出外接圆的面积;【详解】解:因为,所以,解得或(舍去).又为锐角三角形,所以.因为,当且仅当时等号成立,所以.外接圆的半径,故外接圆面积的最小值为故答案为:16、【解析】设出点N的坐标,探求出点Q的轨迹,再求出轨迹上在x轴上方且距离x轴最远的点的纵坐标表达式,借助函数最值计算作答.【详解】圆C:的圆心,半径,圆C与x轴相切,依题意,点M在圆C上,设点,则,线段MN中点,因,则点Q的轨迹是以线段MN为直径的圆(除点M,N外),这个轨迹在x轴上方,于是得这个轨迹上的点到x轴的最大距离为:令,于是得,当,即时,,所以Q点纵坐标的最大值为.故答案为:【点睛】结论点睛:圆上的点到定直线距离的最大值等于圆心到该直线距离加半径.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)当或11时,最大值为55.【解析】(1)根据等差数列的通项公式得方程组,解这个方程组得公差和首项,从而得数列的通项公式n.(2)等差数列的前项和是关于的二次式,将这个二次式配方即可得最大值.【详解】(1)由题设,故(舍,此时)或.故,故.(2)由(1)可得,因为,对称方程为,故当或时,取最大值,此时最大值为.18、(Ⅰ);(Ⅱ)答案见解析.【解析】(Ⅰ)求导数.求得切线方程,由切线与轴的交点在负半轴可得的范围;(Ⅱ)求导数,由的正负确定单调性,极值得最值【详解】命题意图本题主要考查导数在函数问题中的应用解析(Ⅰ)由题可知,,故可得的图象在点处的切线方程为令,可得由题意可得,即,解得,即的取值范围为(Ⅱ)当时,,易知在上单调递增又,当时,,此时单调递减,当时,,此时单调递增,无最大值【点睛】关键点点睛:本题考查用导数的几何意义,考查用导数求函数的的最值.解题关键是求出导函数,由的正负确定单调性,得函数的极值,从而可得最值19、(1)证明见解析(2)【解析】(1)先证明,,进而证明平面,即可证明平面,从而证明平面平面.(2)以点为坐标原点,分别以,,所在直线为轴,轴,轴,建立如图所示的空间直角坐标系,用向量法求解即可【小问1详解】因为为等腰直角三角形,点为棱的中点,所以,又因为,,所以,又因为在中,,,所以,所以,所以,又因为,所以平面,又因为为平行四边形,所以,所以平面,又因为平面,所以平面平面.【小问2详解】因为平面平面,平面平面,,所以平面,又因为,以点为坐标原点,分别以,,所在直线为轴,轴,轴,建立如图所示的空间直角坐标系.则,,,,所以,,,,设平面的一个法向量为,则由,,可得令,得,设直线与平面所成角为,,所以直线与平面所成角的正弦值为.20、(1)(2)【解析】(1)直接利用等比数列的求和公式求解即可,(2)由已知条件结合等比数的性质可得,从而可求得答案,或直接利用等比数列的求和公式化简求解【小问1详解】.【小问2详解】方法1:.∴.方法2:,整理得:又21、(1);(2)证明见解析.【解析】(1)根据离心率为可得,把代入方程可得,又,解方程组即可求得方程;(2)设直线的方程为,整理方程组,求得,及参数的范围,由斜率公式表示出,结合直线方程和韦达定理整理即可得到定值.试题解析:(1)由题意,可得,代入得,又,解得,,所以椭圆的方程为.(2)证明:设直线的方程为,又,,三点不重合,∴,设,,由得,所以,解得,,①,②设直线,的斜率分别为,,则(),分别将①②式代入(),得,所以,即直线,的斜率之和为定值考点:椭圆的标准方程及直线与椭圆的位置关系.【方法点睛】本题主要考查了椭圆的标准方程及直线与椭圆的位置关系,考查了方程的思想和考试与运算能力,属于中档题.求椭圆方程通常用待定系数法,注意隐含条件;研究圆锥曲线中的定值问题,通常根据交点与方程组解得对应性,设而不解,表示出待求定值的表
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年山西省高中学业水平合格考物理试卷试题(含答案详解)
- 天车控制原理图
- 数字编程教育在小学美术课程中的创新应用研究教学研究课题报告
- 推理教学在高中数学教学中的创新实践与效果评估教学研究课题报告
- 2025年化妆品研发前沿:天然成分安全性评估报告
- 生成式AI技术在高中地理课堂多媒体资源制作中的应用与教学效果研究教学研究课题报告
- 2025年数字内容跨境创作平台技术创新路径探索报告
- 西藏自治区教材编译中心2026年度急需紧缺人才引进7人备考题库带答案详解
- 2026年某上市企业测试工程师、CV芯片验证工程师招聘备考题库及一套答案详解
- 2026年江西师范大学图书馆非事业编制聘用人员招聘备考题库(含答案详解)
- 喷绘安装合同范本
- 全反力、摩擦角、自锁现象、辅助角-习题答案
- 2026年湖南食品药品职业学院单招职业适应性测试题库带答案详解
- 《AQ 4272-2025铝镁制品机械加工粉尘防爆安全规范》专题研究报告
- 2025年度威海文旅发展集团有限公司招聘工作人员25人笔试参考题库附带答案详解(3卷)
- T-CNHC 4-2025 昌宁县低质低效茶园改造技术规程
- 2025年手术室护理实践指南试题(含答案)
- 【MOOC】英文技术写作-东南大学 中国大学慕课MOOC答案
- 单为民、血栓与止血常规七项检测课件
- 国家开放大学《市场营销学》章节练习参考答案
- 综掘机技术规格书
评论
0/150
提交评论