版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市第46中学2026届高一上数学期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的图象上的每一点的纵坐标扩大到原来的倍,横坐标扩大到原来的倍,然后把所得的图象沿轴向右平移个单位,这样得到的曲线和的图象相同,则已知函数的解析式为A B.C. D.2.已知角的终边过点,则等于()A.2 B.C. D.3.已知函数,则()A. B.C. D.14.函数的值域为()A. B.C. D.5.已知方程的两根为与,则()A.1 B.2C.4 D.66.用区间表示不超过的最大整数,如,设,若方程有且只有3个实数根,则正实数的取值范围为()A B.C. D.7.函数在上最大值与最小值之和是()A. B.C. D.8.在中,,.若边上一点满足,则()A. B.C. D.9.已知函数在区间上的值域为,对任意实数都有,则实数的取值范围是()A. B.C. D.10.已知函数fx=2x2+bx+c(b,c为实数),f-10=f12.若方程A.4 B.2C.1 D.1二、填空题:本大题共6小题,每小题5分,共30分。11.方程在上的解是______.12.已知函数(1)利用五点法画函数在区间上的图象(2)已知函数,若函数的最小正周期为,求的值域和单调递增区间;(3)若方程在上有根,求的取值范围13.已知且,函数的图像恒过定点,若在幂函数的图像上,则__________14.如果在实数运算中定义新运算“”:当时,;当时,.那么函数的零点个数为______15.若一个扇形的周长为,圆心角为2弧度,则该扇形的面积为__________16.某地街道呈现东—西、南—北向的网格状,相邻街距都为1,两街道相交的点称为格点.若以互相垂直的两条街道为坐标轴建立平面直角坐标系,根据垃圾分类要求,下述格点为垃圾回收点:,,,,,.请确定一个格点(除回收点外)___________为垃圾集中回收站,使这6个回收点沿街道到回收站之间路程的和最短.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量、、是同一平面内的三个向量,且.(1)若,且,求;(2)若,且与互相垂直,求.18.(1)求值:;(2)已知,,试用表示.19.某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58为了预测以后各月的患病人数,甲选择的了模型,乙选择了模型,其中y为患病人数,x为月份数,a,b,c,p,q,r都是常数,结果4月,5月,6月份的患病人数分别为66,82,115,1你认为谁选择的模型较好?需说明理由2至少要经过多少个月患该传染病的人数将会超过2000人?试用你选择的较好模型解决上述问题20.已知圆,直线过点.(1)若直线与圆相切,求直线的方程;(2)若直线与圆交于两点,当的面积最大时,求直线的方程.21.已知函数.(1)化简;(2)若,求下列表达式的值:①;②.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】分析:将.的图象轴向左平移个单位,然后把所得的图象上的每一点的纵坐标变为原来的四分之一倍,横坐标变为原来的二分之一倍,即可得到函数的图象,从而可得结果.详解:利用逆过程:将.的图象轴向左平移个单位,得到的图象;将的图象上的每一点的纵坐标变为原来的四分之一倍得到的图象;将的图象上的每一点的横坐标变为原来的四分之一倍得到的图象,所以函数的解析式为,故选B.点睛:本题主要考查了三角函数图象变换,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.2、B【解析】由正切函数的定义计算【详解】由题意故选:B3、D【解析】由分段函数定义计算【详解】,所以故选:D4、C【解析】由二倍角公式化简,设,利用复合函数求值域.【详解】函数,设,,则,由二次函数的图像及性质可知,所以的值域为,故选:C.5、D【解析】由一元二次方程的根与系数的关系得出两根的和与积,再凑配求解【详解】显然方程有两个实数解,由题意,,所以故选:D6、A【解析】由方程的根与函数交点的个数问题,结合数形结合的数学思想方法,作图观察y={x}的图象与y=﹣kx+1的图象有且只有3个交点时k的取值范围,即可得解.【详解】方程{x}+kx﹣1=0有且只有3个实数根等价于y={x}的图象与y=﹣kx+1的图象有且只有3个交点,当0≤x<1时,{x}=x,当1≤x<2时,{x}=x﹣1,当2≤x<3时,{x}=x﹣2,当3≤x<4时,{x}=x﹣3,以此类推如上图所示,实数k的取值范围为:k,即实数k的取值范围为:(,],故选A【点睛】本题考查了方程的根与函数交点的个数问题,数形结合的数学思想方法,属中档题7、A【解析】直接利用的范围求得函数的最值,即可求解.【详解】∵,∴,∴,∴最大值与最小值之和为,故选:.8、A【解析】根据向量的线性运算法则,结合题意,即可求解.【详解】由中,,且边上一点满足,如图所示,根据向量的线性运算法则,可得:.故选:A.9、D【解析】根据关于对称,讨论与的关系,结合其区间单调性及对应值域求的范围.【详解】由题设,,易知:关于对称,又恒成立,当时,,则,可得;当时,,则,可得;当,即时,,则,即,可得;当,即时,,则,即,可得;综上,.故选:D.【点睛】关键点点睛:利用分段函数的性质,讨论其对称轴与给定区间的位置关系,结合对应值域及求参数范围.10、B【解析】由f-10=f12求得b=-4,再由方程fx=0有两个正实数根x1【详解】因为函数fx=2x2+bx+c(b所以200-10b+c=288+12b+c,解得b=-4,所以fx因为方程fx=0有两个正实数根x1所以Δ=16-8c≥0解得0<c≤2,所以1x当c=2时,等号成立,所以其最小值是2,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】根据三角函数值直接求角.【详解】由,得或,即或,又,故,故答案为.12、(1)(2)的值域为,单调递增区间为;(3)【解析】(1)取特殊点,列表,描点,连线,画出函数图象;(2)化简得到的解析式,进而求出值域,整体法求解单调递增区间;(3)整体法先得到,换元后得到在上有根,进而求出的取值范围.【小问1详解】作出表格如下:x0020-20在平面直角坐标系中标出以下五点,,,,,,用平滑的曲线连接起来,就是函数在区间上的图象,如下图:【小问2详解】,其中,由题意得:,解得:,故,故的值域为,令,解得:,所以的单调递增区间为:【小问3详解】因为,所以,则,令,则,所以方程在上有根等价于在上有根,因为,所以,解得:,故的取值范围是.13、【解析】由题意得14、【解析】化简函数的解析式,解方程,即可得解.【详解】当时,即当时,由,可得;当时,即当时,由,可得(舍).综上所述,函数的零点个数为.故答案为:.15、4【解析】设出扇形的半径,求出扇形的弧长,利用周长公式,求出半径,然后求出扇形的面积【详解】设扇形的半径为:R,所以2R+2R=8,所以R=2,扇形的弧长为:4,半径为2,扇形的面积为:4(cm2)故答案为4【点睛】本题是基础题,考查扇形的面积公式的应用,考查计算能力16、【解析】根据题意,设满足题意得格点为,这6个回收点沿街道到回收站之间路程的和为,故,再分别求和的最小值时的即可得答案.【详解】解:设满足题意得格点为,这6个回收点沿街道到回收站之间路程和为,则,令,由于其去掉绝对值为一次函数,故其最小值在区间端点值,所以代入得,所以当时,取得最小值,同理,令,代入得所以当或时,取得最小值,所以当,或时,这6个回收点沿街道到回收站之间路程的和最小,由于是一个回收点,故舍去,所以当,这6个回收点沿街道到回收站之间路程的和最小,故格点为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2),【解析】(1)先设,根据题意有求解.(2)根据,,得,,然后根据与互相垂直求解.【详解】(1)设,依题意得,解得或,即或.(2)因为,,因为与互相垂直,所以,即,所以,,解得或.【点睛】本题主要考查平面向量的向量表示和运算,还考查了运算求解的能力,属于中档题.18、(1)(2)【解析】(1)先将小数转化为分数并约简,然后各式化成指数幂的形式,再利用指数运算法则即可化简求值.(2)先利用对数的换底公式,以及相关的运算公式将转化为以表示的式子,然后换成m,n即可.【详解】解:(1)原式(2)原式【点睛】主要考查指数幂运算公式以及对数的运算公式的应用,属于基础题.19、(1)应将作为模拟函数,理由见解析;(2)个月.【解析】根据前3个月的数据求出两个函数模型的解析式,再计算4,5,6月的数据,与真实值比较得出结论;由(1),列不等式求解,即可得出结论【详解】由题意,把,2,3代入得:,解得,,,所以,所以,,;把,2,3代入,得:,解得,,,所以,所以,,;、、更接近真实值,应将作为模拟函数令,解得,至少经过11个月患该传染病的人数将会超过2000人【点睛】本题主要考查了函数的实际应用问题,以及指数与对数的运算性质的应用,其中解答中认真审题,正确理解题意,求解函数的解析式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.20、(1)或;(2)或.【解析】(1)分直线l的斜率不存在与直线l的斜率存在两种讨论,根据直线l与圆M相切进行计算,可得直线的方程;(2)设直线l的方程为,圆心到直线l的距离为d,可得的长,由的面积最大,可得,可得k的值,可得直线的方程.【详解】解:(1)当直线l的斜率不存在时,直线l的方程为,此时直线l与圆M相切,所以符合题意,当直线l的斜率存在时,设l的斜率为k,则直线l的方程为,即,因为直线l与圆M相切,所以圆心到直线的距离等于圆的半径,即,解得,即直线l的方程为;综上,直线l的方程为或,(2)因为直线l与圆M交于P.Q两点,所以直线l斜率存在,可设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑工人噪声暴露与血压升高的前瞻性研究
- 康复科AI评估工具的公平性优化路径
- 康复医疗数据安全区块链保护体系
- 应急物资储备管理绩效评价体系
- 应急储备物资成本控制与效益分析
- 常态化职业健康促进工作的可持续推进
- 师资队伍建设与能力提升
- 左室辅助装置联合瓣膜器械治疗策略
- 岛国气候健康科普宣传的多语种策略
- 医疗保险市场创新与监管
- A80685-1.01-A80580-1.01-嘉乐泉煤矿安全生产事故隐患排查治理考核方案
- 微生物发酵技术在农产品加工中的应用-洞察分析
- 经销商大会品质报告
- 中等职业学校专业设置与区域产业结构契合度研究
- GB/T 43934-2024煤矿土地复垦与生态修复技术规范
- 高流量湿化仪的使用技术操作及评分标准
- 手机店新员工培训流程
- 七年级语文朝花夕拾和《西游记》名著阅读试题带答案
- 送出线路工程项目申请报告
- 法学毕业生个人求职简历模板
- 天津市中小学生思想品德发展水平评价指标(小学中高年级学段)
评论
0/150
提交评论