版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省菏泽一中2026届高二上数学期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某公司有320名员工,将这些员工编号为1,2,3,…,320,从这些员工中使用系统抽样的方法抽取20人进行“学习强国”的问卷调查,若54号被抽到,则下面被抽到的是()A.72号 B.150号C.256号 D.300号2.在等比数列{an}中,a1=8,a4=64,则a3等于()A.16 B.16或-16C.32 D.32或-323.在正方体中,E,F分别为AB,CD的中点,则与平面所成的角的正弦值为()A. B.C. D.4.北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有个面角,每个面角是,所以正四面体在每个顶点的曲率为,故其总曲率为.给出下列三个结论:①正方体在每个顶点的曲率均为;②任意四棱锥总曲率均为;③若某类多面体的顶点数,棱数,面数满足,则该类多面体的总曲率是常数.其中,所有正确结论的序号是()A.①② B.①③C.②③ D.①②③5.如图,是水平放置的的直观图,其中,,分别与轴,轴平行,则()A.2 B.C.4 D.6.已知、,则直线的倾斜角为()A. B.C. D.7.美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画切面圆柱体(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体,原圆柱的母线被截面所截剩余的部分称为切面圆柱体的母线)的过程中,发现“切面”是一个椭圆,若切面圆柱体的最长母线与最短母线所确定的平面截切面圆柱体得到的截面图形是有一个底角为60度的直角梯形,则该椭圆的离心率为()A. B.C. D.8.下列说法正确的是()A.“若,则,全为0”的否命题为“若,则,全不为0”B.“若方程有实根,则”的逆命题是假命题C.命题“,”的否定是“,”D.“”是“直线与直线平行”的充要条件9.如果向量,,共面,则实数的值是()A. B.C. D.10.如图,在四面体中,,,,,为线段的中点,则等于()A B.C. D.11.已知随机变量服从正态分布,且,则()A.0.6 B.0.4C.0.3 D.0.212.过椭圆的左焦点作弦,则最短弦的长为()A. B.2C. D.4二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,在平行六面体中,,若,则___________.14.若抛物线:上的一点到它的焦点的距离为3,则__.15.若,满足约束条件,则的最大值为_____________16.数列中,,,设(1)求证:数列是等比数列;(2)求数列的前项和;(3)若,为数列的前项和,求不超过的最大的整数三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的短轴长为2,左、右焦点分别为,,过且垂直于长轴的弦长为1(1)求椭圆C的标准方程;(2)若A,B为椭圆C上位于x轴同侧的两点,且,共线,求四边形的面积的最大值18.(12分)已知抛物线C:经过点(1,-1).(1)求抛物线C的方程及其焦点坐标;(2)过抛物线C上一动点P作圆M:的一条切线,切点为A,求切线长|PA|的最小值.19.(12分)四棱锥中,平面,四边形为平行四边形,(1)若为中点,求证平面;(2)若,求面与面的夹角的余弦值.20.(12分)已知等比数列{}的各项均为正数,,,成等差数列,,数列{}的前n项和,且.(1)求{}和{}的通项公式;(2)设,记数列{}的前n项和为.求证:.21.(12分)已知在平面直角坐标系中,圆A:的圆心为A,过点B(,0)任作直线l交圆A于点C、D,过点B作与AD平行的直线交AC于点E.(1)求动点E的轨迹方程;(2)设动点E的轨迹与y轴正半轴交于点P,过点P且斜率为k1,k2的两直线交动点E的轨迹于M、N两点(异于点P),若,证明:直线MN过定点.22.(10分)2022北京冬奥会即将开始,北京某大学鼓励学生积极参与志愿者的选拔.某学院有6名学生通过了志愿者选拔,其中4名男生,2名女生(1)若从中挑选2名志愿者,求入选者正好是一名男生和一名女生的概率;(2)若从6名志愿者中任选3人负责滑雪项目服务岗位,那么现将6人分为A、B两组进行滑雪项目相关知识及志愿者服务知识竞赛,共赛10局.A、B两组分数(单位:分)如下:A:125,141,140,137,122,114,119,139,121,142B:126,115,143,126,143,115,139,139,115,139从统计学角度看,应选择哪个组更合适?理由是什么?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据系统抽样分成20个小组,每组16人中抽一人,故抽到的序号相差16的整数倍,即可求解.【详解】∵用系统抽样的方法从320名员工中抽取一个容量为20的样本∴,即每隔16人抽取一人∵54号被抽到∴下面被抽到的是54+16×6=150号,而其他选项中的数字不满足与54相差16的整数倍,故答案为:B故选:B2、C【解析】首先根据a4=a1q3,求得q=2,再由a3=即可得解.【详解】由a4=a1q3,得q3=8,即q=2,所以a3==32.故选:C3、B【解析】作出线面角构造三角形直接求解,建立空间直角坐标系用向量法求解.【详解】设正方体棱长为2,、F分别为AB、CD的中点,由正方体性质知平面,所以平面平面,在平面作,则平面,因为,所以即为所求角,所以.故选:B4、D【解析】根据曲率的定义依次判断即可.【详解】①根据曲率的定义可得正方体在每个顶点的曲率为,故①正确;②由定义可得多面体的总曲率顶点数各面内角和,因为四棱锥有5个顶点,5个面,分别为4个三角形和1个四边形,所以任意四棱锥的总曲率为,故②正确;③设每个面记为边形,则所有的面角和为,根据定义可得该类多面体的总曲率为常数,故③正确.故选:D.5、D【解析】先确定是等腰直角三角形,求出,再确定原图的形状,进而求出.【详解】由题意可知是等腰直角三角形,,其原图形是,,,,则,故选:D.6、B【解析】设直线的倾斜角为,利用直线的斜率公式求出直线的斜率,进而可得出直线的倾斜角.【详解】设直线的倾斜角为,由斜率公式可得,,因此,.故选:B.7、A【解析】设圆柱的底面半径为,由题意知,,椭圆的长轴长,短轴长为,可以求出的值,即可得离心率.【详解】设圆柱的底面半径为,依题意知,最长母线与最短母线所在截面如图所示从而因此在椭圆中长轴长,短轴长,,故选:A【点睛】本题主要考查了椭圆的定义和椭圆离心力的求解,属于基础题.8、D【解析】A选项,全为0的否定是不全为0;B选项,先写出逆命题,再判断出真假;C选项,命题“,”的否定是“,”,D选项,根据直线平行,列出方程和不等式,求出,进而判断出充要条件.【详解】“若,则,全为0”的否命题为“若,则,不全为0”,A错误;若方程有实根,则的逆命题是若,则方程有实根,由得:,其中,所以若,则方程有实根是真命题,故B错误;命题“,”的否定是“,”,C错误;直线与直线平行,需要满足且,解得:,所以“”是“直线与直线平行”的充要条件,D正确;故选:D9、B【解析】设,由空间向量的坐标运算可得出方程组,即可解得的值.【详解】由于向量,,共面,设,可得,解得.故选:B.10、D【解析】根据空间向量的线性运算求解【详解】由已知,故选:D11、A【解析】根据正态曲线的对称性即可求得答案.【详解】由题意,正态曲线的对称轴为,则与关于对称轴对称,于是.故选:A.12、A【解析】求出椭圆的通径,即可得到结果【详解】过椭圆的左焦点作弦,则最短弦的长为椭圆的通径:故选:A二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】题中几何体为平行六面体,就要充分利用几何体的特征进行转化,,再将转化为,以及将转化为,,总之等式右边为,,,从而得出,.【详解】解:因为,又,所以,,则.故答案为:2.【点睛】要充分利用几何体的几何特征,以及将作为转化的目标,从而得解.14、【解析】通过抛物线的定义列式求解【详解】根据抛物线的定义知,所以.故答案为:15、6【解析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由,可得,画出直线,将其上下移动,结合的几何意义,可知当直线在y轴截距最大时,z取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.16、(1)证明见解析;(2);(3)2021【解析】(1)将两边都加,证明是常数即可;(2)求出的通项,利用错位相减法求解即可;(3)先求出,再求出的表达式,利用裂项相消法即可得解.【详解】(1)将两边都加,得,而,即有,又,则,,所以数列是首项为,公比为的等比数列;(2)由(1)知,,则,,,因此,,所以;(3)由(2)知,于是得,则,因此,,所以不超过的最大的整数是2021三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)2【解析】(1)根据已知条件求得,由此求得椭圆的标准方程.(2)延长,交椭圆C于点.设出直线的方程并与椭圆方程联立,化简写出根与系数关系,根据对称性求得四边形的面积的表达式,利用换元法,结合基本不等式求得四边形的面积的最大值.【小问1详解】由题可知,即,因为过且垂直于长轴的弦长为1,所以,所以所以椭圆C的标准方程为【小问2详解】因为,共线,所以延长,交椭圆C于点.设,由(1)可知,可设直线的方程为联立,消去x可得,所以,由对称性可知设与间的距离为d,则四边形的面积令,则.因为,当且仅当时取等号,所以,即四边形的面积的最大值为2【点睛】在椭圆、双曲线、抛物线中,求三角形、四边形面积的最值问题,求解策略是:首先结合弦长公式、点到直线距离公式等求得面积的表达式;然后利用基本不等式、二次函数的性质等知识来求得最值.18、(1),焦点坐标为;(2)【解析】(1)将点代入抛物线方程求解出的值,则抛物线方程和焦点坐标可知;(2)设出点坐标,根据切线垂直于半径,根据点到点距离公式表示出,然后结合二次函数的性质求解出的最小值.【小问1详解】解:因为抛物线过点,所以,解得,所以抛物线的方程为:,焦点坐标为;【小问2详解】解:设,因为为圆的切线,所以,,所以,所以当时,四边形有最小值且最小值为.19、(1)证明见解析(2)【解析】(1)先证,,再证平面即可;(2)建立空间直角坐标系,先求出面与面的法向量,再计算夹角余弦值即可.小问1详解】取中点,连接,则四边形为平行四边形,,为直角三角形,且.又平面,平面,.又,平面.【小问2详解】,为等边三角形,取中点,连接,则,以为坐标原点,分别以为轴建立空间坐标系,如图令,则,设面的法向量为,则由得取,则设面的法向量为,则由得取,则设面与面的夹角为,则所以面与面的夹角的余弦值为.20、(1)(2)证明见解析【解析】设等比数列的公比为,由,,成等差数列,解得.由,利用通项公式解得,可得.由数列的前项和,且,时,,化简整理即可得出;(2),利用裂项求和方法、数列的单调性即可证明结论【小问1详解】设等比数列的公比为,,,成等差数列,,即,化为:,解得,,即,解得,数列的前项和,且,时,,化为:,,数列是每项都为1的常数列,,化为【小问2详解】证明:,数列的前项和为,21、(1)(2)证明见解析【解析】(1)作出图象,易知|EB|+|EA|为定值,根据椭圆定义即可判断点E的轨迹,从而写出其轨迹方程;(2)设,当直线MN斜率存在时,设直线MN的方程为:,联立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 票务安全员考试题及答案
- 模拟驾驶科目考试题及答案
- 2025-2026学年七年级上学期英语期中考试(广东卷)原卷版
- 聊城新一中考试题及答案
- 光伏安全认知培训课件
- 光伏安全培训课件
- 佳木斯国家食品安全培训课件
- 高二会考试题及答案
- 概率论试卷及答案
- 福州中考历史题库及答案
- 2025年广西公需科目试题1卷
- 2026届高考一轮复习全5册课内作文素材
- 2025年私人银行行业分析报告及未来发展趋势预测
- (正式版)DB32∕T 5179-2025 《智能建筑工程检测与施工质量验收规程》
- 钢轨探伤工劳动安全培训课件
- 道路车辆汽车列车多车辆间连接装置强度要求
- 《劝学》课件+2025-2026学年统编版高一语文必修上册
- 红楼梦史湘云讲解
- 颅内感染指南解读
- 公路养护培训课件
- 医院生物安全培训简报课件
评论
0/150
提交评论