版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市上海外国语大学附中2026届数学高一上期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一人打靶中连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶 B.两次都中靶C.两次都不中靶 D.只有一次中靶2.函数的零点所在的一个区间是A. B.C. D.3.计算(16A.-1 B.1C.-3 D.34.已知,,是三个不同的平面,是一条直线,则下列说法正确的是()A.若,,,则B.若,,则C.若,,则D.若,,,则5.“”是“”成立的条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分又不必要6.下列选项中,两个函数表示同一个函数的是()A., B.,C., D.,7.已知命题:“,方程有解”是真命题,则实数a的取值范围是()A. B.C. D.8.下列函数中为偶函数的是()A. B.C. D.9.已知,且,则下列不等式恒成立的是()A. B.C. D.10.定义在上的偶函数满足,且在上是减函数,若,是锐角三角形的两个内角,则下列各式一定成立的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,的图像在区间上恰有三个最低点,则的取值范围为________12.已知函数的图像恒过定点,若点也在函数的图像上,则__________13.已知一组样本数据5、6、a、6、8的极差为5,若,则其方差为________.14.正三棱锥中,,则二面角的大小为__________15.已知是定义在上的奇函数,当时,,函数如果对,,使得,则实数m的取值范围为______16.已知函数,那么的表达式是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)化简;(2)若,求.18.已知向量,函数图象相邻两条对称轴之间的距离为.(1)求的解析式;(2)若且,求的值.19.已知函数是定义在区间上的奇函数,且.(1)求函数的解析式;(2)判断函数在区间上的单调性,并用函数单调性的定义证明.20.已知函数是偶函数.(1)求实数的值;(2)若函数,函数只有一个零点,求实数的取值范围.21.如图,在平面直角坐标系中,为单位圆上一点,射线绕点按逆时针方向旋转后交单位圆于点,点的横坐标为(1)求的表达式,并求(2)若,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据互斥事件定义依次判断各个选项即可.【详解】对于A,若恰好中靶一次,则“至少有一次中靶”与“至多有一次中靶”同时发生,不是互斥事件,A错误;对于B,若两次都中靶,则“至少有一次中靶”与“两次都中靶”同时发生,不是互斥事件,B错误;对于C,若两次都不中靶,则“至少有一次中靶”与“两次都不中靶”不能同时发生,是互斥事件,C正确;对于D,若只有一次中靶,则“至少有一次中靶”与“只有一次中靶”同时发生,不是互斥事件,D错误.故选:C.2、B【解析】根据函数的解析式,求得,结合零点的存在定理,即可求解,得到答案.【详解】由题意,函数,可得,即,根据零点的存在定理,可得函数的零点所在的一个区间是.故选:B.【点睛】本题主要考查了函数的零点问题,其中解答中熟记函数零点的存在定理,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3、B【解析】原式=故选B4、A【解析】利用面面垂直的性质,线面的位置关系,面面的位置关系,结合几何模型即可判断.【详解】对于A,在平面内取一点P,在平面内过P分别作平面与,与的交线的垂线a,b,则由面面垂直的性质定理可得,又,∴,由线面垂直的判定定理可得,故A正确;对于B,若,,则与位置关系不确定,可能与平行、相交或在内,故B错误;对于C,若,,则与相交或平行,故C错误;对于D,如图平面,且,,,显然与不垂直,故D错误.故选:A.5、B【解析】求出不等式的等价条件,结合不等式的关系以及充分条件和必要条件的定义进行判断即可【详解】由不等式“”,解得,则“”是“”成立的必要不充分条件即“”是“”成立的必要不充分条件,故选B【点睛】本题主要考查了充分条件和必要条件的判断,其中解答中结合不等式的关系是解决本题的关键,着重考查了推理与判断能力,属于基础题.6、C【解析】根据函数的定义域,即可判断选项A的两个函数不是同一个函数,根据函数解析式不同,即可判断选项B,D的两函数都不是同一个函数,从而为同一个函数的只能选C【详解】A.的定义域为{x|x≠0},y=1的定义域为R,定义域不同,不是同一个函数;B.和y=|x|的解析式不同,不是同一函数;C.y=x的定义域为R,y=lnex=x的定义域为R,定义域和解析式都相同,是同一个函数;D.=|x-1|,=x-1,解析式不同,不是同一个函数故选C【点睛】本题考查同一函数的定义,判断两函数是否为同一个函数的方法:看定义域和解析式是否都相同7、B【解析】由根的判别式列出不等关系,求出实数a的取值范围.【详解】“,方程有解”是真命题,故,解得:,故选:B8、B【解析】利用函数奇偶性的定义可判断A、B、C选项中各函数的奇偶性,利用特殊值法可判断D选项中函数的奇偶性.【详解】对于A选项,令,该函数的定义域为,,所以,函数为奇函数;对于B选项,令,该函数的定义域为,,所以,函数为偶函数;对于C选项,函数的定义域为,则函数为非奇非偶函数;对于D选项,令,则,,且,所以,函数为非奇非偶函数.故选:B.【点睛】本题考查函数奇偶性的判断,考查函数奇偶性定义的应用,考查推理能力,属于基础题.9、D【解析】对A,C利用特殊值即可判断;对B,由对数函数的定义域即可判断,对D,由指数函数的单调性即可判断.【详解】解:对A,令,,则满足,但,故A错误;对B,若使,则需满足,但题中,故B错误;对C,同样令,,则满足,但,故C错误;对D,在上单调递增,当时,,故D正确.故选:D.10、A【解析】根据题意,先得到是周期为的函数,再由函数单调性和奇偶性,得出在区间上是增函数;根据三角形是锐角三角,得到,得出,从而可得出结果.【详解】因为偶函数满足,所以函数是周期为的函数,又在区间上是减函数,所以在区间上是减函数,因为偶函数关于轴对称,所以在区间上是增函数;又,是锐角三角形的两个内角,所以,即,因此,即,所以.故选:A.【点睛】本题主要考查由函数的基本性质比较大小,涉及正弦函数的单调性,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】直接利用正弦型函数的性质的应用和函数的单调递区间的应用求出结果【详解】解:,,根据正弦型函数图象的特点知,轴左侧有1个或2个最低点①若函数图象在轴左侧仅有1个最低点,则,解得,,,此时在轴左侧至少有2个最低点函数图象在轴左侧仅有1个最低点不符合题意;②若函数图象在轴左侧有2个最低点,则,解得,又,则,故,时,在,恰有3个最低点综上所述,故答案:12、1【解析】首先确定点A的坐标,然后求解函数的解析式,最后求解的值即可.【详解】令可得,此时,据此可知点A的坐标为,点在函数的图像上,故,解得:,函数的解析式为,则.【点睛】本题主要考查函数恒过定点问题,指数运算法则,对数运算法则等知识,意在考学生的转化能力和计算求解能力.13、2【解析】根据极差的定义可求得a的值,再根据方差公式可求得结果.【详解】因为该组数据的极差为5,,所以,解得.因为,所以该组数据的方差为故答案为:.14、【解析】取中点为O,连接VO,BO在正三棱锥中,因为,所以,所以=,所以15、【解析】先求出时,,,然后解不等式,即可求解,得到答案【详解】由题意,可知时,为增函数,所以,又是上的奇函数,所以时,,又由在上的最大值为,所以,,使得,所以.故答案为【点睛】本题主要考查了函数的奇偶性的判定与应用,以及函数的最值的应用,其中解答中转化为是解答的关键,着重考查了转化思想,推理与运算能力,属于基础题.16、【解析】先用换元法求出,进而求出的表达式.【详解】,令,则,故,故,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】【试题分析】(1)利用诱导公式和同角三角函数关系,可将原函数化简为;(2)首先除以,即除以,然后分子分母同时除以,将所求式子转化为仅含有的表达式来求解.【试题解析】(Ⅰ)(Ⅱ)==18、(1);(2).【解析】(1)利用数量积及三角恒等变换知识化简得;(2)由,可得,进而得到,再利用两角和余弦公式即可得到结果.试题解析:(1),,即(2),19、(1)(2)增函数,证明见解析【解析】(1)又函数为奇函数可得,结合求得,即可得出答案;(2)令,利用作差法判断的大小,即可得出结论.【小问1详解】解:因为函数是定义在区间上的奇函数,所以,即,所以,又,所以,所以;【小问2详解】解:增函数,证明如下:令,则,因为,所以,,所以,即,所以函数在区间上递增.20、(1);(2).【解析】(1)利用函数为偶函数推出的值,即可求解;(2)根据函数与方程之间的关系,转化为方程只有一个根,利用换元法进行转化求解即可.【详解】(1)由题意,函数为偶函数,所以,即,所以,即,则对恒成立,解得.(2)由只有一个零点,所以方程有且只有一个实根,即方程有且只有一个实根,即方程有且只有一个实根,令,则方程有且只有一个正根,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心血管疾病甲基化风险评估
- 心血管干细胞治疗的细胞产品开发策略
- 心脏移植供体分配的伦理决策支持系统
- 心脏瓣膜3D打印表面抗钙化改性方案
- 心肌炎合并心源性休克的救治策略
- 心理护理在快速康复中的伦理实践
- 心力衰竭重症患者的生活质量管理策略
- 微生物组疫苗:靶向肠道菌群的新型免疫策略
- 微创神经外科手术中超声刀与激光刀的术者操作满意度调查
- 微创电刺激治疗面肌痉挛的疗效分析
- GB/T 19342-2024手动牙刷一般要求和检测方法
- 生活垃圾焚烧发电厂掺烧一般工业固废和协同处置污泥项目环评资料环境影响
- 《桥梁上部构造施工》课件-悬臂拼装法-施工方法
- 小学教育课件教案节奏训练与学生自信心的培养
- 泌尿外科降低持续膀胱冲洗患者膀胱痉挛的发生率根本原因分析柏拉图鱼骨图对策拟定
- 浙江省中医医疗技术感染预防与控制标准操作规程
- 诊断学基础课件:心电图讲稿
- 北京市中小学智慧校园建设规范(试行)
- 结构件通用检验规范
- 水电基础知识培训(二)
- 保险管选型指导书
评论
0/150
提交评论