安徽省江淮名校2026届高二上数学期末达标检测模拟试题含解析_第1页
安徽省江淮名校2026届高二上数学期末达标检测模拟试题含解析_第2页
安徽省江淮名校2026届高二上数学期末达标检测模拟试题含解析_第3页
安徽省江淮名校2026届高二上数学期末达标检测模拟试题含解析_第4页
安徽省江淮名校2026届高二上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省江淮名校2026届高二上数学期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线的一个焦点为,则的值为()A. B.C.1 D.2.已知命题p:,总有,则为()A.,使得 B.,使得C.,总有 D.,总有3.已知m是2与8的等比中项,则圆锥曲线x2﹣=1的离心率是()A.或 B.C. D.或4.某大学数学系共有本科生1500人,其中一、二、三、四年级的人数比为,要用分层随机抽样的方法从中抽取一个容量为300的样本,则应抽取的三年级学生的人数为()A.20 B.40C.60 D.805.已知是空间的一个基底,若,,若,则()A. B.C.3 D.6.已知向量分别是直线的方向向量,若,则()A. B.C. D.7.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B.C. D.8.已知数列中,,则()A. B.C. D.9.若数列是等差数列,其前n项和为,若,且,则等于()A. B.C. D.10.若是函数的一个极值点,则的极大值为()A. B.C. D.11.已知是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则12.设是可导函数,当,则()A.2 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左、右焦点分别为、,直线与的左、右支分别交于点、(、均在轴上方).若直线、的斜率均为,且四边形的面积为,则__________.14.已知正数、满足,则的最大值为__________15.总书记在“十九大”报告中指出:坚定文化自信,推动中华优秀传统文化创造性转化.“杨辉三角”揭示了二项式系数在三角形中的一种几何排列规律,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,欧洲数学家帕斯卡在1654年才发现这一规律,比杨辉要晚近四百年.“杨辉三角”是中国数学史上的一个伟大成就,激发起一批又一批数学爱好者的探究欲望.如图所示,在由二项式系数所构成的“杨辉三角中,第10行第8个数是______16.空间四边形中,,,,,,,则与所成角的余弦值等于___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若分别是椭圆的左、右焦点,是该椭圆上的一个动点,且(1)求椭圆的方程(2)是否存在过定点的直线与椭圆交于不同的两点,使(其中为坐标原点)?若存在,求出直线的斜率;若不存在,说明理由18.(12分)若函数与的图象有一条与直线平行的公共切线,求实数a的值19.(12分)已知A,B两地相距200km,某船从A地逆水到B地,水速为8km/h,船在静水中的速度为vkm/h(v>8).若船每小时的燃料费与其在静水中速度的平方成正比,比例系数为k,当v=12km/h,每小时的燃料费为720元(1)求比例系数k(2)当时,为了使全程燃料费最省,船的实际前进速度应为多少?(3)当(x为大于8的常数)时,为了使全程燃料费最省,船的实际前进速度应为多少?20.(12分)已知椭圆的左焦点为,点到短袖的一个端点的距离为.(1)求椭圆的方程;(2)过点作斜率为的直线,与椭圆交于,两点,若,求的取值范围.21.(12分)已知函数,为的导函数(1)求的定义域和导函数;(2)当时,求函数的单调区间;(3)若对,都有成立,且存在,使成立,求实数a的取值范围22.(10分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点;(I)求异面直线A1B,AC1所成角的余弦值;(II)求直线AB1与平面C1AD所成角的正弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意可知双曲线的焦点在轴,从而可得,再列方程可求得结果【详解】因为双曲线的一个焦点为,所以,,所以,解得,故选:B2、B【解析】由含有一个量词的命题的否定的定义求解.【详解】因为命题p:,总有是全称量词命题,所以其否定为存在量词命题,即,使得,故选:B3、A【解析】利用等比数列求出m,然后求解圆锥曲线的离心率即可【详解】解:m是2与8的等比中项,可得m=±4,当m=4时,圆锥曲线为双曲线x2﹣=1,它的离心率为:,当m=-4时,圆锥曲线x2﹣=1为椭圆,离心率:,故选:A4、C【解析】根据给定条件利用分层抽样的抽样比直接计算作答.【详解】依题意,三年级学生的总人数为,从1500人中用分层随机抽样抽取容量为300的样本的抽样比为,所以应抽取的三年级学生的人数为.故选:C5、C【解析】由,可得存在实数,使,然后将代入化简可求得结果【详解】,,因,所以存在实数,使,所以,所以,所以,得,,所以,故选:C6、C【解析】由题意,得,由此可求出答案【详解】解:∵,且分别是直线的方向向量,∴,∴,∴,故选:C【点睛】本题主要考查向量共线的坐标表示,属于基础题7、B【解析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【详解】由题意可知圆的圆心为,半径,圆的圆心为,半径设关于直线的对称点为,则解得,则因为,分别在圆和圆上,所以,,则因为,所以故选:B.8、D【解析】由数列的递推公式依次去求,直到求出即可.【详解】由,可得,,,故选:D.9、B【解析】由等差数列的通项公式和前项和公式求出的首项和公差,即可求出.【详解】设等差数列的公差为,则解得:,所以.故选:B.10、D【解析】先对函数求导,由已知,先求出,再令,并判断函数在其左右两边的单调性,从而确定极大值点,然后带入原函数即可完成求解.【详解】因为,,所以,所以,,令,解得或,所以当,,单调递增;时,,单调递减;当,,单调递增,所以的极大值为故选:D11、C【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系,逐一核对四个选项得答案【详解】解:对于A:若,则或,故A错误;对于B:若,则或与相交,故B错误;对于C:若,根据面面垂直的判定定理可得,故C正确;对于D:若则与平行、相交、或异面,故D错误;故选:C12、C【解析】由导数的定义可得,即可得答案【详解】根据题意,,故.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设点关于原点的对称点为点,连接,分析可知四边形为平行四边形,可得出,设,可得出直线的方程为,设点、,将直线的方程与双曲线的方程联立,列出韦达定理,求出的取值范围,利用三角形的面积公式可求得的值,即可求得的值.【详解】解:设点关于原点的对称点为点,连接,如下图所示:在双曲线中,,,则,即点、,因为原点为、的中点,则四边形为平行四边形,所以,且,因为,故、、三点共线,所以,,故,由题意可知,,设,则直线的方程为,设点、,联立,可得,所以,,可得,由韦达定理可得,,可得,,整理可得,即,解得或(舍),所以,,解得.故答案为:.14、【解析】直接利用均值不等式得到答案.【详解】,当即时等号成立.故答案为【点睛】本题考查了均值不等式,意在考查学生的计算能力.15、120【解析】根据二项式的展开式系数的相关知识即可求解.【详解】因为,二项式展开式第项的系数为,所以,第10行第8个数是.故答案为:12016、【解析】计算出的值,利用空间向量的数量积可得出的值,即可得解.【详解】,,所以,,所以,.所以,与所成角的余弦值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在;【解析】(1)根据已知条件求得,由此求得椭圆的方程.(2)设出直线的方程并与椭圆方程联立,化简写出根与系数关系,利用列方程,化简求得直线的斜率.【小问1详解】依题意,得椭圆的方程为【小问2详解】存在.理由如下:显然当直线的斜率不存在,即时,不满足条件故由题意可设的方程为.由是直线与椭圆的两个不同的交点,设,由消去y,并整理,得,则,解得,由根与系数的关系得,,即存在斜率的直线与椭圆交于不同的两点,使18、或3【解析】设出切点,先求和平行且和函数相切的切线,再将切线和联立,求出的值.【详解】设公共切线曲线上的切点坐标为,根据题意,得公共切线的斜率,所以,所以与函数的图像相切的切点坐标为,故可求出公共切线方程为由直线和函数的图像也相切,得方程,即关于x的方程有两个相等的实数根,所以,解得或319、(1)5(2)8km/h(3)答案见解析【解析】(1)列出关系式,根据当v=12km/h,每小时的燃料费为720元即可求解;(2)列出燃料费的函数解析式,利用导数求其最值即可;(3)讨论x的范围,结合(2)的结论可得答案.【小问1详解】设每小时的燃料费为,则当v=12km/h,每小时的燃料费为720元,代入得.【小问2详解】由(1)得.设全程燃料费为y,则(),所以,令,解得v=0(舍去)或v=16,所以当时,;当时,,所以当v=16时,y取得最小值,故为了使全程燃料费最省,船的实际前进速度应为8km/h【小问3详解】由(2)得,若时,则y在区间上单调递减,当v=x时,y取得最小值;若时,则y区间(8,16)上单调递减,在区间上单调递增,当v=16时,y取得最小值;综上,当时,船的实际前进速度为8km/h,全程燃料费最省;当时,船的实际前进速度应为(x-8)km/h,全程燃料费最省20、(1)(2)或【解析】(1)根据焦点坐标可得,根据点到短袖一个端点的距离为,然后根据即可;(2)先设联立直线与椭圆的方程,然后根据韦达定理得到,两点的坐标关系,然后根据建立关于直线的斜率的不等式,解出不等式即可.【小问1详解】根据题意,已知椭圆的左焦点为,则有:点到短袖一个端点的距离为,则有:则有:故椭圆的方程为:【小问2详解】设过点作斜率为的直线的方程为:联立直线与椭圆的方程可得:则有:,直线过点,所以恒成立,不妨设,两点的坐标分别为:,则有:又且则有:将,代入后可得:若,则有:解得:或21、(1),(2)在单减,也单减,无增区间(3)【解析】(1)根据分母不等于0,对数的真数大于零即可求得函数的定义域,根据基本初等函数的求导公式及商的导数公式即可求出函数的导函数;(2)求出函数的导函数,再根据导函数的符号即可得出答案;(3)若对,都有成立,即,即,令,,只要即可,利用导数求出函数的最小值即可求出的范围,,,求出函数的值域,根据存在,使成立,则0在函数的值域中,从而可得出的范围,即可得解.【小问1详解】解:的定义域为,;【小问2详解】解:当时,,恒成立,所以在和上递减;【小问3详解】解:若对,都有成立,即,即,令,,则,对于函数,,当时,,当时,,所以函数在上递增,在上递减,所以,当时,,所以,所以,故恒成立,在为减函数,所以,所以,由(1)知,,所以,记,令,,则原式的值域为,因为存在,使成立,所以,,所以,综上,【点睛】本题考查了函数的定义域及导数的四则运算,考查了利用导数求函数的单调区间,考查了不等式恒成立问题,考查了计算能力及数据分析能力,对不等式恒成立合理变形转化为求最值是解题关键.22、(I)(II)【解析】(I)以,,为x,y,z轴建立空间直角坐标系A﹣xyz,可得和的坐标,可得cos<,>,可得答案;(II)由(I)知,=(2,0,﹣4),=(1,1,0),设平面C1AD的法向量为=(x,y,z),由可得=(1,﹣1,),设直线AB1与平面C1AD所成的角为θ,则sinθ=|cos<,>|=,进而可得答案解:(I)以,,x,y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论