版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省毕节市织金一中2026届高二上数学期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线经过点,且它的两条渐近线方程是,则双曲线的离心率是()A. B.C. D.102.设双曲线:的左焦点和右焦点分别是,,点是右支上的一点,则的最小值为()A.5 B.6C.7 D.83.已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是()A.∀x∈R,f(-x)≠f(x)B.∀x∈R,f(-x)≠-f(x)C∃x0∈R,f(-x0)≠f(x0)D.∃x0∈R,f(-x0)≠-f(x0)4.已知某地区7%的男性和0.49%的女性患色盲.假如男性、女性各占一半,从中随机选一人,则此人恰是色盲的概率是()A.0.01245 B.0.05786C.0.02865 D.0.037455.已知中,角,,的对边分别为,,,且,,成等比数列,则这个三角形的形状是()A.直角三角形 B.等边三角形C.等腰直角三角形 D.钝角三角形6.某海关缉私艇在执行巡逻任务时,发现其所在位置正西方向20nmile处有一走私船只,正以30nmile/h的速度向北偏东30°的方向逃窜,若缉私艇突然发生机械故障,20min后才以的速度开始追赶,则在走私船只不改变航向和速度的情况下,缉私艇追上走私船只的最短时间为()A.1h B.C. D.7.东汉末年的数学家赵爽在《周髀算经》中利用一副“弦图”,根据面积关系给出了勾股定理的证明,后人称其为“赵爽弦图”.如图1,它由四个全等的直角三角形与一个小正方形拼成的一个大正方形.我们通过类比得到图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形.对于图2.下列结论正确的是()①这三个全等的钝角三角形不可能是等腰三角形;②若,,则;③若,则;④若是的中点,则三角形的面积是三角形面积的7倍.A.①②④ B.①②③C.②③④ D.①③④8.如图,在平行六面体中,底面是边长为的正方形,若,且,则的长为()A. B.C. D.9.“,”的否定是A., B.,C., D.,10.已知函数是区间上的可导函数,且导函数为,则“对任意的,”是“在上为增函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知函数的导函数的图像如图所示,则下列说法正确的是()A.是函数的极大值点B.函数在区间上单调递增C.是函数的最小值点D.曲线在处切线的斜率小于零12.设等差数列的前项和为,若,则的值为()A.28 B.39C.56 D.117二、填空题:本题共4小题,每小题5分,共20分。13.已知F1,F2是双曲线C:﹣y2=1(a>0)的左、右焦点,点P是双曲线C上的任意一点(不是顶点),过F1作∠F1PF2的角平分线的垂线,垂足为H,O是坐标原点.若|F1F2|=6|OH|,则双曲线C的方程为____14.已知椭圆的长轴在轴上,若焦距为4,则__________.15.若“x2-2x-8>0”是“x<m”的必要不充分条件,则m最大值为________16.已知点是抛物线上的两点,,点是抛物线的焦点,若,则的值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线:.(1)若曲线是双曲线,求的取值范围;(2)设,已知过曲线的右焦点,倾斜角为的直线交曲线于A,B两点,求.18.(12分)设数列是公比为q的等比数列,其前n项和为(1)若,,求数列的前n项和;(2)若,,成等差数列,求q的值并证明:存在互不相同的正整数m,n,p,使得,,成等差数列;(3)若存在正整数,使得数列,,…,在删去以后按原来的顺序所得到的数列是等差数列,求所有数对所构成的集合,19.(12分)如图,四棱锥中,平面,∥,,,为上一点,平面(Ⅰ)求证:∥平面;(Ⅱ)若,求点D到平面EMC的距离20.(12分)已知命题:对任意实数都有恒成立;命题:关于的方程有实数根(1)若命题为假命题,求实数的取值范围;(2)如果“”为真命题,且“”为假命题,求实数的取值范围21.(12分)如图,在长方体中,,若点P为棱上一点,且,Q,R分别为棱上的点,且.(1)求直线与平面所成角的正弦值;(2)求平面与平面的夹角的余弦值.22.(10分)已知椭圆的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设斜率为k的直线与椭圆C交于两点,O为坐标原点,若的面积为定值,判断是否为定值,如果是,求出该定值;如果不是,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由已知设双曲线方程为:,代入求得,计算即可得出离心率.【详解】双曲线经过点,且它的两条渐近线方程是,设双曲线方程为:,代入得:,.所以双曲线方程为:..双曲线C的离心率为故选:A2、C【解析】根据双曲线的方程求出的值,由双曲线的定义可得,由双曲线的性质可知,利用函数的单调性即可求得最小值.【详解】由双曲线:可得,,所以,所以,,由双曲线的定义可得,所以,所以,由双曲线的性质可知:,令,则,所以上单调递增,所以当时,取得最小值,此时点为双曲线的右顶点,即的最小值为,故选:C.3、C【解析】利用偶函数的定义和全称命题的否定分析判断解答.【详解】∵定义域为R的函数f(x)不是偶函数,∴∀x∈R,f(-x)=f(x)为假命题,∴∃x0∈R,f(-x0)≠f(x0)为真命题.故选C【点睛】本题主要考查偶函数的定义和全称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.4、D【解析】设出事件,利用全概率公式进行求解.【详解】用事件A,B分别表示随机选1人为男性或女性,用事件C表示此人恰是色盲,则,且A,B互斥,故故选:D5、B【解析】根据题意求出,结合余弦定理分情况讨论即可.【详解】解:因为,所以.由题意得,利用余弦定理得:.当,即时,,即,解得:.此时三角形为等边三角形;当,即时,,不成立.所以三角形的形状是等边三角形.故选:B.【点睛】本题主要考查利用余弦定理判断三角形的形状,属于基础题.6、A【解析】设小时后,相遇地点为,在三角形中根据题目条件得出,再在三角形中,由勾股定理即可求出.【详解】以缉私艇为原点,建立如下图所示的直角坐标系.图中走私船所在位置为,设缉私艇追上走私船的最短时间为,相遇地点为.则,走私船以的速度向北偏东30°的方向逃窜,60°.因为20min后缉私艇才以的速度开始追赶走私船,所以20min走私船行走了,到达.在三角形中,由余弦定理知:,则,所以.在三角形中,,,有:,化简得:,则.缉私艇追上走私船只的最短时间为1h.故选:A.点睛】7、A【解析】对于①,由三角形大边对大角的性质分析,对于②,根据题意利用正弦定理分析,对于③,利用余弦定理分析,对于④,利用三角形的面积公式分析判断【详解】对于①,根据题意,图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形,故,,所以这三个全等的钝角三角形不可能是等腰三角形,故①正确;对于②,由题知,在中,,,,所以,所以由正弦定理得解得,因为,所以,故②正确;对于③,不妨设,所以在中,由余弦定理得,代入数据得,所以,所以,故③错误;对于④,若是的中点,则,所以,故④正确.故选:A第II卷(非选择题8、D【解析】由向量线性运算得,利用数量积的定义和运算律可求得,由此可求得.【详解】由题意得:,,且,又,,,,.故选:D.9、D【解析】通过命题的否定的形式进行判断【详解】因为全称命题的否定是特称命题,故“,”的否定是“,”.故选D.【点睛】本题考查全称命题的否定,属基础题.10、A【解析】根据充分条件与必要条件的概念,由导函数的正负与函数单调性之间关系,即可得出结果.【详解】因为函数是区间上的可导函数,且导函数为,若“对任意的,”,则在上为增函数;若在上为增函数,则对任意的恒成立,即由“对任意的,”能推出“在上为增函数”;由“在上为增函数”不能推出“对任意的,”,因此“对任意的,”是“在上为增函数”的充分不必要条件.故选:A11、B【解析】根据导函数的图象,得到函数的单调区间与极值点,即可判断;【详解】解:由导函数的图象可知,当时,当时,当时,当或时,则在上单调递增,在上单调递减,所以函数在处取得极小值即最小值,所以是函数的极小值点与最小值点,因为,所以曲线在处切线的斜率大于零,故选:B12、B【解析】由已知结合等差数列的求和公式及等差数列的性质即可求解.【详解】因为等差数列中,,则.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、8x2﹣y2=1【解析】延长F1H与PF2,交于K,连接OH,由三角形的中位线定理和双曲线的定义、垂直平分线的性质,结合双曲线的a,b,c的关系,可得双曲线方程【详解】解:延长F1H与PF2,交于K,连接OH,由题意可得PH为边KF1的垂直平分线,则|PF1|=|PK|,且H为KF1的中点,|OH|=|KF2|,由双曲线的定义可得|PF1|﹣|PF2|=|PK|﹣|PF2|=|F2K|=2a,则|OH|=a,又|F1F2|=6|OH|,所以2c=6a,即c=3a,b==2a,又双曲线C:﹣y2=1,知b=1,所以a=,所以双曲线的方程为8x2﹣y2=1故答案为:8x2﹣y2=114、8【解析】根据椭圆方程列方程,解得结果.【详解】因为椭圆的长轴在轴上,焦距为4,所以故答案为:8【点睛】本题考查根据椭圆方程求参数,考查基本分析求解能力,属基础题.15、【解析】解不等式,得到或,,根据必要不充分条件,得到是A的真子集,从而求出,得到m的最大值.【详解】,解得:或,所以记或,;若“x2-2x-8>0”是“x<m”的必要不充分条件,则是A的真子集故,所以m最大值为故答案为:-216、10【解析】由抛物线的定义根据题意可知求得p,代入抛物线方程,分别求得y1,y2的值,即可求得y12+y2的值【详解】由抛物线的定义可得,依据题设可得,则(舍去负值),故,故填.【点睛】本题考查抛物线的定义和性质,利用已知相等关系求解抛物线方程,然后求解已知点的纵坐标,解题中需要熟练抛物的定义和性质,灵活应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用双曲线的标准方程直接列不等式组,即可求解;(2)先求出直线l的方程为:,利用“设而不求法”和弦长公式求弦长.【小问1详解】要使曲线:为双曲线,只需,解得:,即的取值范围.【小问2详解】当m=0时,曲线C的方程为,可得,所以右焦点,由题意可得直线l的方程为:.设,联立整理可得:,可得:所以弦长,所以18、(1)(2),证明见解析.(3)不存在,【解析】(1)数列为首项为公差为的等差数列,利用等差数列的求和公式即可得出结果;(2),,成等差数列,则+=2,根据等比数列求和公式计算可解得,进而计算可得,即可判断结果;(3)由题意列出,,…,,,,,,…,在删去以后,按原来的顺序所得到的数列是等差数列,则,解方程组可得无解,则所有数对所构成的集合为.【小问1详解】,,数列是公比为q的等比数列,,数列为,数列为首项为公差为的等差数列,数列的前n项和.【小问2详解】,,成等差数列,+=2,当时,+=,2,不符题意舍去,当时,.,即,,,(舍)或即,存在互不相同的正整数,使得,,成等差数列,,,.【小问3详解】由题意列出,,…,,,,,,…,在删去以后,按原来的顺序所得到的数列是等差数列,则,,即,解得:方程组无解.即符合条件的不存在,所有数对所构成的集合为.19、(Ⅰ)证明见解析;(Ⅱ)【解析】(Ⅰ)运用线面平行的判定定理证明;(Ⅱ)借助体积相等建立方程求解即可【详解】(Ⅰ)证明:取的中点,连接,因为,所以,又因为平面,所以,所以平面,因为平面,所以∥,面,平面,所以∥平面;(Ⅱ)因为平面,面,所以平面平面,平面平面,过点作直线,则平面,由已知平面,∥,,可得,又,所以为的中点,在中,,在中,,,在中,,由等面积法知,所以,即点D到平面EMC的距离为.考点:直线与平面的位置关系及运用【易错点晴】本题考查的是空间的直线与平面平行的推证问题和点到直线的距离问题.解答时,证明问题务必要依据判定定理,因此线面的平行问题一定要在所给的平面中找出一条直线与这个平面外的直线平行,叙述时一定要交代面外的线和面内的线,这是许多学生容易忽视的问题,也高考阅卷时最容易扣分的地方,因此在表达时一定要引起注意20、(1);(2)【解析】(1)先分别求出命题为真命题和命题为真命题时参数的范围,则可得当命题为假命题,实数的取值范围(2)由“”为真命题,且“”为假命题,则命题,一真一假,再分真,且假,和真,且假两种情况分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心血管疾病AI风险评估的数据隐私保护
- 心脏移植供体分配的社会支持系统构建
- 心脏康复精准化:影像学与分子标志物整合评估
- 心肌炎患者的免疫营养支持策略
- 心内膜炎脑出血的多学科诊疗策略
- 微生物组与肠道疾病精准诊疗策略
- 微创神经外科老年患者麻醉风险评估工具
- 微创神经外科手术中超声刀与激光刀的烟雾管理策略
- 微创电刺激治疗偏头痛的前瞻性研究
- 微创入路对术后嗅觉功能的影响
- 2026年安全员考试题库300道附完整答案【必刷】
- 医疗纠纷预防与处理流程
- 2025福建德化闽投抽水蓄能有限公司招聘15人模拟试卷附答案
- 销售行业合同范本
- 2026年民用无人机操控员执照(CAAC)考试复习重点题库标准卷
- 英语试卷+答案黑龙江省哈三中2025-2026学年上学期高二学年12月月考(12.11-12.12)
- 运输企业消防安全责任制
- 小说阅读专题复习(部编版六年级)
- DLT1249-2013 架空输电线路运行状态评估技术导则
- 液压升降平台安装施工方案
- 安全通道防护棚计算书
评论
0/150
提交评论