版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山东省枣庄八中高一上数学期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,且,则A. B.C.2 D.-22.已知,则的取值范围是()A. B.C. D.3.已知函数的上单调递减,则的取值范围是()A. B.C. D.4.设m,n是两条不同直线,,是两个不同的平面,下列命题正确的是A.,且,则B.,,,,则C.,,,则D.,且,则5.函数的单调递增区间是()A. B.C. D.6.如图,边长为的正方形是一个水平放置的平面图形的直观图,则图形的面积是A. B.C. D.7.长方体中的8个顶点都在同一球面上,,,,则该球的表面积为()A. B.C. D.8.基本再生数R0与世代间隔T是新冠肺炎流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天9.函数的大致图象是A. B.C. D.10.“学生甲在河北省”是“学生甲在沧州市”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.若三棱锥中,,其余各棱长均为5,则三棱锥内切球的表面积为_____12.已知幂函数的图象经过点,且满足条件,则实数的取值范围是___13.过点且在轴,轴上截距相等的直线的方程为___________.14.从2008年京津城际铁路通车运营开始,高铁在过去几年里快速发展,并在国民经济和日常生活中扮演着日益重要的角色.下图是2009年至2016年高铁运营总里程数的折线图图(图中的数据均是每年12月31日的统计结果).根据上述信息下列结论中,所有正确结论的序号是____①2015年这一年,高铁运营里程数超过0.5万公里;②2013年到2016年高铁运营里程平均增长率大于2010到2013高铁运营里程平均增长率;③从2010年至2016年,新增高铁运营里程数最多的一年是2014年;④从2010年至2016年,新增高铁运营里程数逐年递增;15.函数的值域为_______________.16.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bienao).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知关于x的不等式:a(1)当a=-2时,解此不等式;(2)当a>0时,解此不等式18.已知二次函数,若不等式的解集为,且方程有两个相等的实数根.(1)求的解析式;(2)若,成立,求实数m的取值范围.19.设函数的定义域为A,集合.(1);(2)若集合是的子集,求实数a的取值范围.20.已知集合,集合(1)当时,求;(2)若,求实数的取值范围;(3)若,求实数的取值范围21.已知,且(1)求的值;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由于两个向量垂直,故有.故选:A2、B【解析】根据对数函数的性质即可确定的范围.【详解】由对数及不等式的性质知:,而,所以.故选:B3、C【解析】利用二次函数的图象与性质得,二次函数f(x)在其对称轴左侧的图象下降,由此得到关于a的不等关系,从而得到实数a的取值范围【详解】当时,,显然适合题意,当时,,解得:,综上:的取值范围是故选:C【点睛】本小题主要考查函数单调性的应用、二次函数的性质、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题4、D【解析】对每一个命题逐一判断得解.【详解】对于A,若m∥α,n∥β且α∥β,说明m、n是分别在平行平面内的直线,它们的位置关系应该是平行或异面或相交,故A不正确;对于B,若“m⊂α,n⊂α,m∥β,n∥β”,则“α∥β”也可能α∩β=l,所以B不成立对于C,根据面面垂直的性质,可知m⊥α,n⊂β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C不正确;对于D,由m⊥α,n⊥β且α⊥β,则m与n一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m与n相交,且设m与n确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m与n所成的角为90°,故命题D正确故答案为D【点睛】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力和空间想象能力.5、C【解析】根据诱导公式变性后,利用正弦函数的递减区间可得结果.【详解】因为,由,得,所以函数的单调递增区间是.故选:C6、D【解析】根据直观图画出原图可得答案.【详解】由直观图画出原图,如图,因为,所以,,则图形的面积是.故选:D7、B【解析】根据题意,求得长方体的体对角线,即为该球的直径,再用球的表面积公式即可求得结果.【详解】由已知,该球是长方体的外接球,故,所以长方体的外接球半径,故外接球的表面积为.故选:.【点睛】本题考查长方体的外接球问题,涉及球表面积公式的使用,属综合基础题.8、B【解析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,根据,解得即可得结果.【详解】因为,,,所以,所以,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,则,所以,所以,所以天.故选:B.【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.9、D【解析】关于对称,且时,,故选D10、B【解析】直接利用充分条件与必要条件的定义判断即可.【详解】因为若“学生甲在沧州市”则“学生甲一定在河北省”,必要性成立;若“学生甲在河北省”则“学生甲不一定在沧州市”,充分性不成立,所以“学生甲在河北省”是“学生甲在沧州市”的必要不充分条件,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意得,易知内切球球心到各面的距离相等,设为的中点,则在上且为的中点,在中,,所以三棱锥内切球的表面积为12、【解析】首先求得函数的解析式,然后求解实数的取值范围即可.【详解】设幂函数的解析式为,由题意可得:,即幂函数的解析式为:,则即:,据此有:,求解不等式组可得实数的取值范围是.【点睛】本题主要考查幂函数的定义及其应用,属于基础题.13、或【解析】当直线不过原点时设截距式方程;当直线过原点时设,分别将点代入即可【详解】由题,当直线不过原点时设,则,所以,则直线方程为,即;当直线过原点时设,则,所以,则直线方程为,即,故答案为:或【点睛】本题考查求直线方程,考查截距式方程的应用,截距相同的直线问题,需注意过原点的情况14、②③【解析】根据数据折线图,分别进行判断即可.【详解】①看2014,2015年对应的纵坐标之差小于2-1.5=0.5,故①错误;②连线观察2013年到2016年两点连线斜率更大,故②正确;③2013年到2014年两点纵坐标之差最大,故③正确;④看相邻纵坐标之差是否逐年增加,显然不是,有增有减,故④错误;故答案为:②③.15、【解析】先求出,再结合二次函数的内容求解.【详解】由得,,故当时,有最小值,当时,有最大值.故答案为:.16、【解析】M﹣ABC四个面都为直角三角形,MA⊥平面ABC,MA=AB=BC=2,∴三角形的AC=2,从而可得MC=2,那么ABC内接球的半径r:可得(﹣r)2=r2+(2﹣)2解得:r=2-∵△ABC时等腰直角三角形,∴外接圆半径为AC=外接球的球心到平面ABC的距离为=1可得外接球的半径R=故得:外接球表面积为.由已知,设内切球半径为,,,内切球表面积为,外接球与内切球的表面积之和为故答案为:.点睛:本题考查了球与几何体的问题,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线,这样两条直线的交点,就是其外接球的球心.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1){x|x<-12(2)当a=13时,解集为∅;当0<a<13时,解集为{x|3<x<【解析】(1)利用一元二次不等式的解法解出即可;(2)不等式可变形为(x-3)(x-1a)<0,然后分a=13、0<a<13、a>【小问1详解】当a=-2时,不等式-2x2+5x+3<0整理得(2x+1)(x-3)>0,解得x<-12或x>3当a=-2时,原不等式解集为{x|x<-12或x>【小问2详解】当a>0时,不等式ax2-(3a+1)x+3<0整理得:(x-3)(x-1a)<0当a=13时,1a=当0<a<13时,1a>3,解得3<x<当a>13时,1a<3,解得1a<x综上:当a=13时,解集为当0<a<13时,解集为{x|3<x<1a当a>13时,解集为{x|1a<x18、(1);(2).【解析】(1)根据的解集为,可得1,2即为方程的两根,根据韦达定理,可得b,c的表达式,根据有两个相等的实数根.可得该方程,即可求得a的值,即可得答案;(2)由题意得使成立,则只需,利用基本不等式,即可求得答案.【详解】(1)因为的解集为,所以1,2即为方程的两根,由韦达定理得,且,解得,,又方程有两个相等实数根,所以,即,,解得,所以,所以;(2)由(1)可得,,所以,则,,又,当且仅当,即x=2时等号成立,所以,使成立,等价为成立,所以.【点睛】已知解集求一元二次不等式参数时,关键是灵活应用韦达定理,进行求解,处理存在性问题时,需要,若处理恒成立问题时,需要,需认真区分问题,再进行解答,属中档题.19、(1);(2).【解析】(1)由函数的定义域、指数函数的性质可得,,再由集合的并集运算即可得解;(2)由集合的交集运算可得,再由集合的关系可得,即可得解.【详解】由可得,所以,,(1)所以;(2)因为,所以,所以,解得,所以实数a的取值范围为.【点睛】本题考查了函数定义域及指数不等式的求解,考查了集合的运算及根据集合间的关系求参数,属于基础题.20、(1);(2);(3)【解析】(1)求出集合,利用并集的定义可求得集合;(2)利用可得出关于实数的不等式组,由此可解得实数的取值范围;(3)分和两种情况讨论,结合可得出关于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 细胞呼吸的原理和应用课件-高一上学期生物人教版必修
- 抖音商家代销合同范本
- 委托安装安全合同范本
- 承接电梯大修合同范本
- 安利解除合同关系协议
- 大象映画合同肖像协议
- 广告位买断合同协议书
- 工厂除尘改装合同范本
- 执业兽医招聘合同范本
- UnitDevelopingideas(Listening)课件件-外研版七年级英语下册
- 教师三笔字培训课件
- 党的二十届四中全会精神丨线上知识有奖竞答题库
- 工程项目施工管理工作流程
- 房地产开发公司建立质量保证体系情况说明
- 数学课如何提高课堂教学容量
- 伤口造口院内专科护士护理考核试题与答案
- JJF 1759-2019衰减校准装置校准规范
- 群文阅读把数字写进诗
- 医用设备EMC培训资料课件
- 锅炉防磨防爆工作专项检查方案
- 气田后期开发技术负压采气技术
评论
0/150
提交评论