阿拉善市重点中学2026届高二数学第一学期期末综合测试模拟试题含解析_第1页
阿拉善市重点中学2026届高二数学第一学期期末综合测试模拟试题含解析_第2页
阿拉善市重点中学2026届高二数学第一学期期末综合测试模拟试题含解析_第3页
阿拉善市重点中学2026届高二数学第一学期期末综合测试模拟试题含解析_第4页
阿拉善市重点中学2026届高二数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

阿拉善市重点中学2026届高二数学第一学期期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知过抛物线焦点的直线交抛物线于,两点,则的最小值为()A. B.2C. D.32.已知,则下列不等式一定成立的是()A B.C. D.3.天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.在平面直角坐标系中,设定点为,,,点O为坐标原点,动点满足(且为常数),化简得曲线E:.当,时,关于曲线E有下列四个命题:①曲线E既是轴对称图形,又是中心对称图形;②的最大值为;③的最小值为;④面积的最大值为.其中,正确命题的个数为()A.1个 B.2个C.3个 D.4个4.若向量则()A. B.3C. D.5.若,则下列等式一定成立的是()A. B.C. D.6.已知集合,,则()A. B.C. D.7.由下面的条件一定能得出为锐角三角形的是()A. B.C. D.8.已知函数的导数为,且,则()A. B.C.1 D.9.若在1和16中间插入3个数,使这5个数成等比数列,则公比为()A. B.2C. D.410.如图,平行六面体中,与的交点为,设,则选项中与向量相等的是()A. B.C. D.11.从1,2,3,4,5中任取2个不同的数,两数和为偶数的概率为()A. B.C. D.12.在正三棱锥中,,且,M,N分别为BC,AD的中点,则直线AM和CN夹角的余弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则函数在区间上的平均变化率为___________.14.已知向量与是平面的两个法向量,则__________15.已知正项数列的前n项和为,且,则__________,满足不等式的最大整数为__________16.函数的图象在点处的切线的方程是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知公差大于零的等差数列的前项和为,且满足,,(1)求数列的通项公式;(2)若数列是等差数列,且,求非零常数;18.(12分)已知函数在处的切线与轴平行(1)求的值;(2)判断在上零点的个数,并说明理由19.(12分)已知圆C经过、两点,且圆心在直线上(1)求圆C的方程;(2)若直线经过点且与圆C相切,求直线的方程20.(12分)已知点A(-2,0),B(2,0),动点M满足直线AM与BM的斜率之积为,记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)若直线和曲线C相交于E,F两点,求.21.(12分)已知椭圆的左焦点与抛物线的焦点重合,椭圆的离心率为,过点作斜率不为0的直线,交椭圆于两点,点,且为定值(1)求椭圆的方程;(2)求面积的最大值22.(10分)某班名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是、、、.(1)估计该班本次测试的平均分;(2)在、中按分层抽样的方法抽取个数据,再从这个数据中任抽取个,求抽出个中至少有个成绩在中的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设出直线方程,联立抛物线方程,得到韦达定理,求得,利用抛物线定义,将目标式转化为关于的代数式,消元后,利用基本不等式即可求得结果.【详解】因为抛物线的焦点的坐标为,显然要满足题意,直线的斜率存在,设直线的方程为联立可得,其,设坐标为,显然,则,,根据抛物线定义,MF=故=4+4令,故4+4当且仅当,即时取得最小值.故选:D.【点睛】本题考察抛物线中的最值问题,涉及到韦达定理的使用,基本不等式的使用;其中利用的关系,以及抛物线的定义转化目标式,是解决问题的关键.2、B【解析】运用不等式的性质及举反例的方法可求解.【详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B3、D【解析】①:根据轴对称图形、中心对称图形的方程特征进行判断即可;②:结合两点间距离公式、曲线方程特征进行判断即可;③:根据卡西尼卵形线的定义,结合基本不等式进行判断即可;④:根据方程特征,结合三角形面积公式进行判断即可.【详解】当,时,.①:因为以代方程不变,以代方程不变,同时代,以代方程不变,所以曲线E既是轴对称图形,又是中心对称图形,因此本命题正确;②:由,所以有,所以,当时成立,因此本命题正确;③:因为,所以,当且仅当时,取等号,因此本命题正确;④:,因为,所以,的面积为,因此本命题正确,故选:D【点睛】关键点睛:利用方程特征进行求解判断是解题的关键.4、D【解析】先求得,然后根据空间向量模的坐标运算求得【详解】由于向量,,所以.故故选:D5、D【解析】利用复数除法运算和复数相等可用表示出,进而得到之间关系.【详解】,,,则.故选:D.6、A【解析】由已知得,因为,所以,故选A7、D【解析】对于A,两边平方得,由得,即为钝角;对于B,由正弦定理求出,进而求出,可得结果;对于C,根据平方关系将余弦化为正弦,用正弦定理可将角转化为边,进而可得的值,从而作出判断;对于D,由可得,推出,,,故可知三个内角均为锐角【详解】解:对于A,由,两边平方整理得,,因为,所以,所以,所以,所以为钝角三角形,故A不正确;对于B,由,得,所以,因为,所以,所以或,所以或,所以为直角三角形或钝角三角形,故B不正确;对于C,因为,所以,即,由正弦定理得,由余弦定理得,因为,所以,故三角形为钝角三角形,C不正确;对于D,由可得,因为中最多只有一个钝角,所以,,中最多只有一个为负数,所以,,,所以中三个内角都为锐角,所以为锐角三角形,故D正确;故选:D8、B【解析】直接求导,令求出,再将带入原函数即可求解.【详解】由得,当时,,解得,所以,.故选:B9、A【解析】根据等比数列的通项得:,从而可求出.【详解】解:成等比数列,∴根据等比数列的通项得:,,故选:A.10、B【解析】利用空间向量加减法、数乘的几何意义,结合几何体有,进而可知与向量相等的表达式.【详解】连接,如下图示:,.故选:B11、B【解析】利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】从中任取个不同的数的方法有,共种,其中和为偶数的有共种,所以所求的概率为.故选:B【点睛】本小题主要考查古典概型概率计算,属于基础题.12、B【解析】由题意可得两两垂直,所以以为原点,所在的直线分别为轴,建立空间直角坐标系,利用空间向量求解【详解】因为,所以两两垂直,所以以为原点,所在的直线分别为轴,建立空间直角坐标系,如图所示,因为,所以,因为M,N分别为BC,AD的中点,所以,所以,设直线AM和CN所成的角为,则,所以直线AM和CN夹角的余弦值为,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】根据平均变化率的定义即可计算.【详解】设,因,,所以.故答案为:314、【解析】由且为非零向量可直接构造方程求得,进而得到结果.【详解】由题意知:,,解得:(舍)或,.故答案为:.15、①.##②.【解析】由得到,即可得到数列是首项为1,公差为1的等差数列,从而求出,再根据求出,令,利用裂项相消法求出,即可求出的取值范围,从而得解;【详解】解:由,令,得,,解得;当时,,即因此,数列是首项为1,公差为1的等差数列,,即所以,令,所以,所以,则最大整数为;故答案为:;;16、【解析】求导,求得,,根据直线的点斜式方程求得答案.【详解】因为,,所以切线的斜率,切线方程是,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用等差数列的性质可得,联立方程可得,代入等差数列的通项公式可求;(2)代入等差数列的前和公式可求,进一步可得,然后结合等差数列的定义可得,从而可求.【详解】(1)为等差数列,,又是方程的两个根,(2)由(1)可知,为等差数列,舍去)当时,为等差数列,满足要求【点睛】本题主要考查了等差数列的定义、性质、通项公式、前项和公式的综合运用,属于中档题.18、(1)0(2)f(x)在(0,π)上有且只有一个零点,理由见解析【解析】(1)利用导数的几何意义求解;(2)由,可得,令,,,,利用导数法求解.【小问1详解】解:,所以k=f′(0)=-a=0,所以a=0;【小问2详解】由,可得,令,,所以,①当时,sinx+cosx≥1,ex>1,所以g′(x)>0,所以g(x)在上单调递增,又因为g(0)=0,所以g(x)在上无零点;②当时,令,所以h′(x)=2cosxex<0,即h(x)在上单调递减,又因为,h(π)=-eπ-1<0,所以存在,,所以g(x)在上单调递增,在上单调递减,因为,g(π)=-π<0,所以g(x)在上且只有一个零点;综上所述:f(x)在(0,π)上有且只有一个零点19、(1);(2)【解析】(1)根据圆心在弦的垂直平分线上,先求出弦的垂直平分线的方程与联立可求得圆心坐标,再用两点间的距离公式求得半径,进而求得圆的方程;(2)当直线斜率不存在时,与圆相切,方程为;当直线斜率存在时,设斜率为,写出其点斜式方程,利用圆心到直线的距离等于半径建立方程求解出的值.试题解析:(1)依题意知线段的中点坐标是,直线的斜率为,故线段的中垂线方程是即,解方程组得,即圆心的坐标为,圆的半径,故圆的方程是(2)若直线斜率不存在,则直线方程是,与圆相离,不合题意;若直线斜率存在,可设直线方程是,即,因为直线与圆相切,所以有,解得或所以直线的方程是或.20、(1),曲线是一个双曲线,除去左右顶点(2)【解析】(1)设,则的斜率分别为,,根据题意列出方程,化简后即得C的方程,根据方程可以判定曲线类型,注意特殊点的去除;(2)联立方程,利用韦达定理和弦长公式计算可得.【小问1详解】解:设,则的斜率分别为,,由已知得,化简得,即曲线C的方程为,曲线一个双曲线,除去左右顶点.【小问2详解】解:联立消去整理得,设,,则,.21、(1)(2)【解析】(1)由抛物线焦点可得c,再根据离心率可得a,即得b;(2)先设直线方程x=ty+m,根据向量数量积表示,将直线方程与椭圆方程联立方程组,结合韦达定理代入化简可得为定值的条件,解出m;根据点到直线距离得三角形的高,利用弦公式可得底,根据面积公式可得关于t的函数,最后根据基本不等式求最值【详解】试题解析:解:(1)设F1(﹣c,0),∵抛物线y2=﹣4x的焦点坐标为(﹣1,0),且椭圆E的左焦点F与抛物线y2=﹣4x的焦点重合,∴c=1,又椭圆E的离心率为,得a=,于是有b2=a2﹣c2=1.故椭圆Γ的标准方程为:(2)设A(x1,y1),B(x2,y2),直线l的方程为:x=ty+m,由整理得(t2+2)y2+2tmy+m2﹣2=0,,,==(t2+1)y1y2+(tm﹣t)(y1+y2)+m2﹣要使为定值,则,解得m=1或m=(舍)当m=1时,|AB|=|y1﹣y2|=,点O到直线AB的距离d=,△OAB面积S=∴当t=0,△OAB面积的最大值为.22、(1);(2).【解析】(1)将每个矩形底边的中点值乘以对应矩形的面积,再将所得结果全部相加可得的值;(2)分析可知,所抽取的个数据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论