云南省曲靖市沾益县第四中学2026届高二数学第一学期期末达标检测模拟试题含解析_第1页
云南省曲靖市沾益县第四中学2026届高二数学第一学期期末达标检测模拟试题含解析_第2页
云南省曲靖市沾益县第四中学2026届高二数学第一学期期末达标检测模拟试题含解析_第3页
云南省曲靖市沾益县第四中学2026届高二数学第一学期期末达标检测模拟试题含解析_第4页
云南省曲靖市沾益县第四中学2026届高二数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省曲靖市沾益县第四中学2026届高二数学第一学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知事件A,B相互独立,,则()A.0.24 B.0.8C.0.3 D.0.162.在公比为为q等比数列中,是数列的前n项和,若,则下列说法正确的是()A. B.数列是等比数列C. D.3.设各项均为正项的数列满足,,若,且数列的前项和为,则()A. B.C.5 D.64.已知双曲线的左右焦点分别为、,过作的一条渐近线的垂线,垂足为,若的面积为,则的渐近线方程为A. B.C. D.5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()A. B.C. D.6.已知是抛物线上的点,F是抛物线C的焦点,若,则()A.1011 B.2020C.2021 D.20227.已知等比数列的前项和为,首项为,公比为,则()A. B.C. D.8.已知直线过点,,则该直线的倾斜角是()A. B.C. D.9.已知点,和直线,若在坐标平面内存在一点P,使,且点P到直线l的距离为2,则点P的坐标为()A.或 B.或C.或 D.或10.已知命题:,;命题:在中,若,则,则下列命题为真命题的是()A. B.C. D.11.已知双曲线C:-=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为A.-=1 B.-=1C.-=1 D.-=112.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.各项均为正数的等比数列的前n项和为,满足,,则___________.14.若直线与直线平行,且原点到直线的距离为,则直线的方程为____________.15.一条直线经过,并且倾斜角是直线的倾斜角的2倍,则直线的方程为__________16.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来1524石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为_______石三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,若函数处取得极值(1)求,的值;(2)求函数在上的最大值和最小值18.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率,若不能,说明理由19.(12分)已知命题p:,命题q:.(1)若命题p为真命题,求实数x的取值范围.(2)若p是q的充分条件,求实数m的取值范围;20.(12分)在中,,,请再从条件①、条件②这两个条件中选择一个作为已知,然后解答下列问题.(1)求角的大小;(2)求的面积.条件①:;条件②:.21.(12分)如图,已知菱形ABCD的边长为3,对角线,将△沿着对角线BD翻折至△的位置,使得,在平面ABCD上方存在一点M,且平面ABCD,(1)求证:平面平面ABD;(2)求点M到平面ABE的距离;(3)求二面角的正弦值22.(10分)如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的封闭图形.(1)设,,求这个几何体的表面积;(2)设G是弧DF的中点,设P是弧CE上的一点,且.求异面直线AG与BP所成角的大小.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用事件独立性的概率乘法公式及条件概率公式进行求解.【详解】因为事件A,B相互独立,所以,所以故选:B2、D【解析】根据等比数列的通项公式、前项和公式的基本量运算,即可得到答案;【详解】,,故A错误;,,显然数列不是等比数列,故B错误;,故C错误;,,故D成立;故选:D3、D【解析】由利用因式分解可得,即可判断出数列是以为首项,为公差的等差数列,从而得到数列,数列的通项公式,进而求出【详解】等价于,而,所以,即可知数列是以为首项,为公差的等差数列,即有,所以,故故选:D4、D【解析】求得,根据的面积列方程,由此求得,进而求得双曲线的渐近线方程.【详解】依题意,双曲线的一条渐近线为,则,所以,所以,所以.所以双曲线渐近线方程为.故选:D【点睛】本小题主要考查双曲线渐近线的有关计算,属于中档题.5、C【解析】先研究四个选项中图象的特征,再对照小明上学路上的运动特征,两者对应即可选出正确选项.【详解】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图象一定是下降的,由此排除A;再由小明骑车上学,开始时匀速行驶可得出图象开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图象与x轴平行,由此排除D,之后为了赶时间加快速度行驶,此一段时间段内函数图象下降的比较快,由此可确定C正确,B不正确故选C【点睛】本题考查函数的表示方法,关键是理解坐标系的度量与小明上学的运动特征,属于基础题.6、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C7、D【解析】根据求解即可.【详解】因为等比数列,,所以.故选:D8、C【解析】根据直线的斜率公式即可求得答案.【详解】设该直线的倾斜角为,该直线的斜率,即.故选:C9、C【解析】设点的坐标为,根据,点到直线的距离为,联立方程组即可求解.【详解】解:设点的坐标为,线段的中点的坐标为,,∴的垂直平分线方程为,即,∵点在直线上,∴,又点到直线:的距离为,∴,即,联立可得、或、,∴所求点的坐标为或,故选:C10、C【解析】分别求得的真假性,从而确定正确答案.【详解】对于,由于,所以为假命题,为真命题.对于,在三角形中,,由正弦定理得,所以为真命题,为假命题.所以为真命题,、、为假命题.故选:C11、A【解析】由题意得,双曲线的焦距为,即,又双曲线的渐近线方程为,点在的渐近线上,所以,联立方程组可得,所以双曲线的方程为考点:双曲线的标准方程及简单的几何性质12、B【解析】求出的等价条件,结合充分条件和必要条件的定义判断可得出结论.【详解】,因“”“”且“”“”,因此,“”是“”的必要不充分条件.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用等比数列的通项公式和前项和公式,即可得到答案.【详解】由题意各项均为正数的等比数列得:,故答案为:14、【解析】可设直线的方程为,利用点到直线的距离公式求得,即可得解.【详解】可设直线的方程为,即,则原点到直线的距离为,解得,所以直线的方程为.故答案为:.15、【解析】先求出直线倾斜角,从而可求得直线的倾斜角,则可求出直线的斜率,进而可求出直线的方程【详解】因为直线的斜率为,所以直线的倾斜角为,所以直线的倾斜角为,所以直线的斜率为,因为直线经过,所以直线的方程为,即,故答案为:16、168石【解析】由题意,得这批米内夹谷约为石考点:用样本估计总体三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值为,最小值为【解析】(1)求出导函数,由即可解得;(2)求出函数的单调区间,进而可以求出函数的最值.【详解】解:(1)由题意,可得,得.(2),令,得或(舍去)当变化时,与变化如下递增递减所以函数在上的最大值为,最小值为.18、(1)证明见解析(2)能为平行四边形;斜率为4-或4+【解析】(1)设两点坐标,由点差法证明(2)求出两点坐标,由平行四边形的几何性质判断【小问1详解】设的斜率为,,两式相减可得,即故【小问2详解】由(1)得的直线为,直线方程为联立,解得联立解得若四边形OAPB为平行四边形,则对角线互相平分为中点,解得,经检验,均符合题意故四边形OAPB能为平行四边形,此时斜率为4-或4+19、(1);(2).【解析】(1)由一元二次不等式的解法求得的范围;(2)由p是q的充分条件,转化为集合的包含关系,从而可求实数m的取值范围.【详解】(1)由p:为真,解得.(2)q:,若p是q的充分条件,则是的子集所以.即.20、(1)条件选择见解析,(2)【解析】(1)选①,利用余弦定理求出的值,结合角的取值范围,即可求得角的值;选②,利用余弦定理可求出的值,并利用余弦定理求出的值,结合角的取值范围,即可求得角的值;(2)利用三角形的面积公式可求得的面积.【小问1详解】解:选①,,由余弦定理可得,,所以,.选②,,整理可得,,解得,由余弦定理可得,,所以,.【小问2详解】解:由三角形的面积公式可得.21、(1)证明见解析;(2)1;(3).【解析】(1)过E作EO垂直于BD于O,连接AO,由勾股定义易得,由菱形的性质有,再根据线面垂直、面面垂直的判定即可证结论.(2)构建空间直角坐标系,确定相关点的坐标,进而求的坐标及面ABE的法向量,应用空间向量的坐标运算求点面距.(3)由(2)求得面MBA的法向量,结合(2)中面ABE的法向量,应用空间向量夹角的坐标表示求二面角的余弦值,进而求其正弦值.【小问1详解】过E作EO垂直于BD于O,连接AO,因为,,故,同理,又,所以,即因为ABCD为菱形,所以,又,所以面ABD,又面EBD,所以面面ABD【小问2详解】以O为坐标原点,以,,分别为x轴,y轴,z轴的正方向,如图建立空间直角坐标系,则,,,,,所以,,面ABE的法向量为,所以,令,则又,则点M到面ABE的距离为【小问3详解】由(2)得:面ABE的一个法向量为,且,若面MBA的法向量为,则,令,则所以,故二面角正弦值为22、(1)(2)【解析】(1)将几何体的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论