2026届雅安市重点中学高一数学第一学期期末联考试题含解析_第1页
2026届雅安市重点中学高一数学第一学期期末联考试题含解析_第2页
2026届雅安市重点中学高一数学第一学期期末联考试题含解析_第3页
2026届雅安市重点中学高一数学第一学期期末联考试题含解析_第4页
2026届雅安市重点中学高一数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届雅安市重点中学高一数学第一学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数概率是A. B.C. D.2.已知函数幂函数,且在其定义域内为单调函数,则实数()A. B.C.或 D.3.下列四组函数中,表示同一函数的一组是()A. B.C. D.4.已知函数的定义域为,若是奇函数,则A. B.C. D.5.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数(的单位:天)的Logistic模型:其中为最大确诊病例数.当时,标志着已初步遏制疫情,则约为()A.60 B.65C.66 D.696.平行于直线且与圆相切的直线的方程是A.或 B.或C.或 D.或7.某几何体的正视图和侧视图均为如图1所示,则在图2的四个图中可以作为该几何体的俯视图的是A.(1),(3) B.(1),(4)C.(2),(4) D.(1),(2),(3),(4)8.已知函数,,则函数的零点个数不可能是()A.2个 B.3个C.4个 D.5个9.设,则()A. B.C. D.10.已知函数的图象与函数的图象关于直线对称,函数是满足的偶函数,且当时,,若函数有3个零点,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(为常数)是奇函数.(1)求的值与函数的定义域.(2)若当时,恒成立.求实数的取值范围.12.计算__________13.已知函数,为偶函数,则______14.在平行四边形中,为上的中点,若与对角线相交于,且,则__________15.已知正四棱锥的底面边长为4cm,高与斜高的夹角为,则该正四棱锥的侧面积等于________cm216.___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的最小正周期和单调递增区间;(2)若当时,求的最大值和最小值及相应的取值.18.近年来,随着我市经济的快速发展,政府对民生越来越关注市区现有一块近似正三角形的土地(如图所示),其边长为2百米,为了满足市民的休闲需求,市政府拟在三个顶点处分别修建扇形广场,即扇形和,其中与、分别相切于点,且与无重叠,剩余部分(阴影部分)种植草坪.设长为(单位:百米),草坪面积为(单位:万平方米).(1)试用分别表示扇形和的面积,并写出的取值范围;(2)当为何值时,草坪面积最大?并求出最大面积.19.已知函数,且点在函数图象上.(1)求函数的解析式,并在图中的直角坐标系中画出函数的图象;(2)若方程有两个不相等的实数根,求实数的取值范围.20.已知是定义在上的偶函数,当时,(1)求;(2)求的解析式;(3)若,求实数a的取值范围21.已知是同一平面内的三个向量,其中(1)若,且,求的坐标;(2)若,且与的夹角为,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】从1,2,3,4这4个数中,不放回地任意取两个数,共有(12),(1,3),(1,4),(2,1),(2,3),(2,4)(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种其中满足条件两个数都是奇数的有(1,3),(3,1)两种情况故从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率.故选A.2、A【解析】由幂函数的定义可得出关于的等式,求出的值,然后再将的值代入函数解析式进行检验,可得结果.【详解】因为函数为幂函数,则,即,解得或.若,函数解析式为,该函数在定义域上不单调,舍去;若,函数解析式,该函数在定义域上为增函数,合乎题意.综上所述,.故选:A.3、A【解析】判断两函数定义域与函数关系式是否一致即可;【详解】解:.和的定义域都是,对应关系也相同,是同一函数;的定义域为,的定义域为,,定义域不同,不是同一函数;的定义域为,的定义域为,定义域不同,不是同一函数;的定义域为,的定义域为或,定义域不同,不是同一函数故选:4、D【解析】由为奇函数,可得,求得,代入计算可得所求值【详解】是奇函数,可得,且时,,可得,则,可得,则,故选D【点睛】本题考查函数的奇偶性的判断和运用,考查定义法和运算能力,属于基础题5、B【解析】由已知可得方程,解出即可【详解】解:由已知可得,解得,两边取对数有,解得.故选:B6、A【解析】设所求直线为,由直线与圆相切得,,解得.所以直线方程为或.选A.7、A【解析】可以是一个正方体上面一个球,也可以是一个圆柱上面一个球8、B【解析】由可得或,然后画出的图象,结合图象可分析出答案.【详解】由可得或的图象如下:所以当时,,此时无零点,有2个零点,所以的零点个数为2;当时,,此时有2个零点,有2个零点,所以的零点个数为4;当时,,此时有4个零点,有2个零点,所以的零点个数为6;当时,,此时有3个零点,有2个零点,所以的零点个数为5;当且时,此时有2个零点,有2个零点,所以的零点个数为4;当时,,此时的零点个数为2;当时,,此时有2个零点,有3个零点,所以的零点个数为5;当时,,此时有2个零点,有4个零点,所以的零点个数为6;当时,,此时有2个零点,有2个零点,所以零点个数为4;当时,,此时有2个零点,无零点,所以的零点个数为2;综上:的零点个数可以为2、4、5、6,故选:B9、A【解析】利用中间量隔开三个值即可.【详解】∵,∴,又,∴,故选:A【点睛】本题考查实数大小的比较,考查指对函数的性质,属于常考题型.10、B【解析】把函数有3个零点,转化为有3个不同根,画出函数与的图象,转化为关于的不等式组求解即可.【详解】由函数的图象与函数的图象关于直线对称,得,函数是最小正周期为2的偶函数,当时,,函数有3个零点,即有3个不同根,画出函数与的图象如图:要使函数与的图象有3个交点,则,且,即.∴实数的取值范围是.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、(1),定义域为或;(2).【解析】(1)根据函数是奇函数,得到,求出,再解不等式,即可求出定义域;(2)先由题意,根据对数函数的性质,求出的最小值,即可得出结果.【详解】(1)因为函数是奇函数,所以,所以,即,所以,令,解得或,所以函数的定义域为或;(2),当时,所以,所以.因为,恒成立,所以,所以的取值范围是.【点睛】本题主要考查由函数奇偶性求参数,考查求具体函数的定义域,考查含对数不等式,属于常考题型.12、5【解析】化简,故答案为.13、4【解析】利用二次函数为偶函数的性质得一次项系数为0,定义域关于原点对称,即可求得的值.【详解】由题意得:解得:故答案为:.【点睛】本题考查二次函数的性质,考查逻辑推理能力和运算求解能力,求解时注意隐含条件的挖掘.14、3【解析】由题意如图:根据平行线分线段成比例定理,可知,又因为,所以根据三角形相似判定方法可以知道∵为的中点∴相似比为∴∴故答案为315、32【解析】在正四棱锥的高和斜高所在的直角三角形中计算出斜高后,根据三角形的面积公式即可求出侧面积.【详解】因为正四棱锥的底面边长为4cm,高与斜高的夹角为,所以斜高为cm,所以该正四棱锥的侧面积等于cm2故答案为:32.【点睛】本题考查了正棱锥的结构特征,考查了求正四棱锥的侧面积,属于基础题.16、【解析】利用、两角和的正弦展开式进行化简可得答案.【详解】故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期为,(2)最小值为-1,的值为,最大值为2,的值为【解析】(1)利用周期公式可得最小正周期,由的单调递增区间可得的单调递增区间;(2)由得,当,即时,函数取得最大值,当,即时,函数取得最小值可得答案.【小问1详解】函数的最小正周期为,令因为的单调递增区间是,由,解得,所以,函数的单调递增区间是.【小问2详解】令,因为,所以,即,当,即时,函数取得最大值,因此的最大值为,此时自变量的值为;当,即时,函数取得最小值,因此的最小值为,此时自变量的值为.18、(1),,;(2)时,草坪面积最大,最大面积为万平方米.【解析】(1)因为,所以可得三个扇形的半径,圆心角都为,由扇形的面积公式可得答案;(2)用三角形面积减去三个扇形面积可得草坪面积,再利用二次函数可求出最值.【详解】(1),则,,在扇形中,的长为,所以,同理,.∵与无重叠,∴,即,则.又三个扇形都在三角形内部,则,∴.(2)∵,∴,∴当时,取得最大值,为.故当长为百米时,草坪面积最大,最大面积为万平方米.【点睛】弧度制中求扇形弧长和面积的关键在于确定半径和扇形圆心角弧度数,解题时通常要根据已知条件列出方程,运用方程思想求解,强化了数学运算的素养.属于中档题.19、(1),图象见解析(2)【解析】(1)先根据点在函数的图象上求出,再分段画出函数的图象;(2)将问题转化为直线与函数的图象有两个公共点,在同一坐标系中作出图象,利用图象进行求解.【小问1详解】解:因为点在函数的图象上,所以,解得,即,其图象如图所示:【小问2详解】解:将化为,因为方程有两个不相等的实数根,所以直线与函数的图象有两个公共点,在同一坐标系中作出直线与函数的图象(如图所示),由图象,得,即,即的取值范围是.20、(1)2(2)(3)【解析】(1)根据偶函数这一性质将问题转化为求的值,再代入计算即可;(2)设,根据偶函数这一性质,求出另一部分的解析即可;(3)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论