黑龙江省绥化市青冈县一中2026届高一数学第一学期期末经典模拟试题含解析_第1页
黑龙江省绥化市青冈县一中2026届高一数学第一学期期末经典模拟试题含解析_第2页
黑龙江省绥化市青冈县一中2026届高一数学第一学期期末经典模拟试题含解析_第3页
黑龙江省绥化市青冈县一中2026届高一数学第一学期期末经典模拟试题含解析_第4页
黑龙江省绥化市青冈县一中2026届高一数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省绥化市青冈县一中2026届高一数学第一学期期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若则A. B.C. D.2.若关于的函数的最大值为,最小值为,且,则实数的值为()A.2020 B.2019C.1009 D.10103.已知幂函数的图象过点(2,),则的值为()A B.C. D.4.30°的弧度数为()A. B.C. D.5.已知函数,则下列选项中正确的是()A.函数是单调增函数B.函数的值域为C.函数为偶函数D.函数的定义域为6.设,,,则的大小关系是()A B.C. D.7.已知平面向量,,若,则实数值为()A.0 B.-3C.1 D.-18.设是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则;②若,,,则;③若,,则;④若,,则.其中正确命题的序号是A.① B.②和③C.③和④ D.①和④9.已知是定义在上的奇函数且单调递增,,则的取值范围是()A. B.C. D.10.函数(A,ω,φ为常数,A>0,ω>0,)的部分图象如图所示,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知a=0.32,b=413,c=log132,则a12.已知指数函数(且)在区间上的最大值是最小值的2倍,则______13.已知集合(1)当时,求的非空真子集的个数;(2)当时,若,求实数的取值范围14.在中,若,则的形状一定是___________三角形.15.已知,则的最小值为___________16.已知向量,其中,若,则的值为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,,且.(1)求的值;(2)求的值.18.已知函数,,.(1)若,解关于方程;(2)设,函数在区间上的最大值为3,求的取值范围;(3)当时,对任意,函数在区间上的最大值与最小值的差不大于1,求的取值范围.19.设,为两个不共线的向量,若.(1)若与共线,求实数的值;(2)若为互相垂直的单位向量,且,求实数的值.20.已知集合且和集合(Ⅰ)求;(Ⅱ)若全集,集合,且,求a的取值范围21.已知定义在R上的函数满足:①对任意实数,,均有;②;③对任意,(1)求的值,并判断的奇偶性;(2)对任意的x∈R,证明:;(3)直接写出的所有零点(不需要证明)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】集合A三个实数0,1,2,而集合B表示的是大于等于1小于2的所有实数,所以两个集合的交集{1},故选A.考点:集合的运算.2、D【解析】化简函数,构造函数,再借助函数奇偶性,推理计算作答.【详解】依题意,当时,,,则,当时,,,即函数定义域为R,,令,,显然,即函数是R上的奇函数,依题意,,,而,即,而,解得,所以实数的值为.故选:D3、A【解析】令幂函数且过(2,),即有,进而可求的值【详解】令,由图象过(2,)∴,可得故∴故选:A【点睛】本题考查了幂函数,由幂函数的形式及其所过的定点求解析式,进而求出对应函数值,属于简单题4、B【解析】根据弧度与角度之间的转化关系进行转化即可.详解】解:,故选.【点睛】本题考查了将角度制化为弧度制,属于基础题.5、D【解析】应用换元法求的解析式,进而求其定义域、值域,并判断单调性、奇偶性,即可知正确选项.【详解】由题意,由,则,即.令,则∴,其定义域为不是偶函数,又故不单调增函数,易得,则,∴.故选:D6、C【解析】详解】,即,选.7、C【解析】根据,由求解.【详解】因为向量,,且,所以,解得,故选:C.8、A【解析】结合直线与平面垂直的性质和平行判定以及平面与平面的位置关系,逐项分析,即可.【详解】①选项成立,结合直线与平面垂直的性质,即可;②选项,m可能属于,故错误;③选项,m,n可能异面,故错误;④选项,该两平面可能相交,故错误,故选A.【点睛】本题考查了直线与平面垂直的性质,考查了平面与平面的位置关系,难度中等.9、A【解析】根据函数的奇偶性,把不等式转化为,再结合函数的单调性,列出不等式组,即可求解.【详解】由题意,函数是定义在上的奇函数,所以,则不等式,可得,又因为单调递增,所以,解得,故选:.【点睛】求解函数不等式的方法:1、解函数不等式的依据是函数的单调性的定义,具体步骤:①将函数不等式转化为的形式;②根据函数的单调性去掉对应法则“”转化为形如:“”或“”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.10、B【解析】根据函数图像易得,,求得,再将点代入即可求得得值.【详解】解:由图可知,,则,所以,所以,将代入得,所以,又,所以.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、a>b>c【解析】根据指数函数与对数函数单调性直接判断即可.【详解】由已知得a=0.32<b=413所以a>b>c,故答案为:a>b>c.12、或2【解析】先讨论范围确定的单调性,再分别进行求解.【详解】①当时,,得;②当时,,得,故或2故答案为:或2.13、(1)30(2)或【解析】(1)当时,可得中元素的个数,进而可得的非空真子集的个数;(2)根据,可分和两种情况讨论,可得出实数的取值范围【小问1详解】当时,,共有5个元素,所以的非空真子集的个数为【小问2详解】(1)当时,,解得;(2)当时,根据题意作出如图所示的数轴,可得或解得:或综上可得,实数的取值范围是或14、等腰【解析】根据可得,利用两角和的正弦公式展开,再逆用两角差的正弦公式化简,结合三角形内角的范围可得,即可得的形状.【详解】因,,所以,即,所以,可得:,因为,,所以所以,即,故是等腰三角形.故答案为:等腰.15、【解析】根据基本不等式,结合代数式的恒等变形进行求解即可.【详解】解:因为a>0,b>0,且4a+b=2,所以有:,当且仅当时取等号,即时取等号,故答案为:.16、4【解析】利用向量共线定理即可得出【详解】∵∥,∴=8,解得,其中,故答案为【点睛】本题考查了向量共线定理,考查了向量的坐标运算,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2)【解析】(1)由已知根据同角三角函数的基本关系可求得,根据代入即可求得求得结果.(2)由(1)利用二倍角公式,可求得,进而可得的值,根据角的范围,即可确定结果.【详解】(1)∵,且∴∴又∵∴(2)∴∴或∵∴又∵∴∵,且∴又∵∴∴【点睛】本题考查同角三角函数的基本关系,二倍角公式,两角和与差的三角函数,考查已知三角函数值求角,属于基础题.18、(1);(2);(3).【解析】(1)将代入函数的解析式,并求出函数的定义域,利用对数的运算法则可解出方程;(2)当时,,分、和三种情况讨论,去绝对值,分析函数在区间上的单调性,结合该函数在区间上的最大值为,可求出实数的取值范围;(3)利用对数的运算性质可得出,可知该函数在区间上为减函数,由题意得出对任意的恒成立,求出在上的最大值,即可得出实数的取值范围.【详解】(1)当时,,则,定义域为.由,可得,可得,解得或(舍去),因此,关于的方程的解为;(2)当时,.当时,对任意的恒成立,则,此时,函数在区间上为增函数,,合乎题意;当时,对任意的恒成立,则,此时,函数在区间上为减函数,,解得,不合乎题意;当时,令,得,此时,所以,函数在区间上为减函数,在区间上为增函数.,,由于,所以,解得.此时,.综上所述,实数的取值范围是;(3),由于内层函数在区间为减函数,外层函数为增函数,所以,函数在区间上为减函数,所以,,由题意可得,可得,所以,.①当时,;②当时,令,设,可得.下面利用定义证明函数在区间上的单调性,任取、且,即,,,,,,即,所以,函数在区间上单调递减,当时,函数取得最大值.综上所述,函数在上的最大值为,.因此,实数的取值范围是.【点睛】本题考查对数方程的求解、考查了利用带绝对值函数的最值求参数,同时也考查了函数不等式恒成立问题,考查运算求解能力,属于中等题.19、(1)-;(2)2.【解析】(1)若与共线,则存在实数,使得,根据,为两个不共线的向量可列出关于k和λ的方程组,求解方程组即可;(2)若,则,代入,根据向量数量积运算律即可计算.小问1详解】若与共线,则存在实数,使得,即,则且,解得;小问2详解】由题可知,,,若,则,变形可得:,即.20、(Ⅰ);(Ⅱ).【解析】Ⅰ由函数的定义域及值域的求法得,,可求Ⅱ先求解C,再由集合的补集的运算及集合间的包含关系得,解得【详解】Ⅰ由,,得,即,解不等式,得,即,所以,Ⅱ解不等式得:,即,又,又,所以,解得:,【点睛】本题考查了函数的定义域及值域的求法,考查了集合的交集、补集的运算及集合间的包含关系,属于简单题21、(1)=2,f(x)为偶函数;(2)证明见解析;(3),.【解析】(1)令x=y=0可求f(0);令x=y=1可求f(2);令x=0可求奇偶性;(2)令y=1即可证明;(3)(1),是以4为周期

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论