2026届黑龙江省齐市地区普高联谊校高二上数学期末考试试题含解析_第1页
2026届黑龙江省齐市地区普高联谊校高二上数学期末考试试题含解析_第2页
2026届黑龙江省齐市地区普高联谊校高二上数学期末考试试题含解析_第3页
2026届黑龙江省齐市地区普高联谊校高二上数学期末考试试题含解析_第4页
2026届黑龙江省齐市地区普高联谊校高二上数学期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届黑龙江省齐市地区普高联谊校高二上数学期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列中前项和满足,若是递增数列,则的取值范围为()A. B.C. D.2.设,,且,则等于()A. B.C. D.3.下列有关命题的表述中,正确的是()A.命题“若是偶数,则,都是偶数”的否命题是假命题B.命题“若为正无理数,则也是无理数”的逆命题是真命题C.命题“若,则”的逆否命题为“若,则”D.若命题“”,“”均为假命题,则,均为假命题4.俗话说“好货不便宜,便宜没好货”,依此判断,“不便宜”是“好货”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件5.已知椭圆的左、右焦点分别为、,点在椭圆上,若,则的面积为()A. B.C. D.6.如图所示,在中,,,,AD为BC边上的高,;若,则的值为()A. B.C. D.7.已知双曲线:与椭圆:有相同的焦点,且一条渐近线方程为:,则双曲线的方程为()A. B.C. D.8.已知、,直线,,且,则的最小值为()A. B.C. D.9.命题“,”否定形式是()A., B.,C., D.,10.已知数列满足,,在()A.25 B.30C.32 D.6411.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待18秒才出现绿灯的概率为()A B.C. D.12.某程序框图如图所示,该程序运行后输出的k的值是A.3 B.4C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.如图三角形数阵:123456789101112131415……按照自上而下,自左而右的顺序,2021位于第i行的第j列,则______14.过点作圆的切线,则切线方程为______.15.万众瞩目的北京冬奥会将于2022年2月4日正式开幕,继2008年北京奥运会之后,国家体育场(又名鸟巢)将再次承办奥运会开幕式.在手工课上,王老师带领同学们一起制作了一个近似鸟巢的金属模型,其俯视图可近似看成是两个大小不同、扁平程度相同的椭圆.已知大椭圆的长轴长为40cm,短轴长为20cm,小椭圆的短轴长为10cm,则小椭圆的长轴长为________cm.16.某高中高二年级学生在学习完成数学选择性必修一后进行了一次测试,总分为100分.现用分层随机抽样方法从学生的数学成绩中抽取一个样本量为40的样本,再将40个成绩样本数据分为6组:40,50),50,60),60,70),70,80),80,90),90,100,绘制得到如图所示的频率分布直方图.(1)从所给的频率分布直方图中估计成绩样本数据众数,平均数,中位数;(2)在区间40,50)和90,100内的两组学生成绩样本数据中,随机抽取两个进调查,求调查对象来自不同分组的概率.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线过点,O为坐标原点(1)求焦点的坐标及其准线方程;(2)抛物线C在点A处的切线记为l,过点A作与切线l垂直的直线,与抛物线C的另一个交点记为B,求的面积18.(12分)已知两圆x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0(1)m取何值时两圆外切?(2)m取何值时两圆内切?(3)当m=45时,求两圆公共弦所在直线的方程和公共弦的长19.(12分)在①,②,③,三个条件中任选一个,补充在下面的问题中,并解答.设数列是公比大于0的等比数列,其前项和为,数列是等差数列,其前项和为.已知,,,_____________.(1)请写出你选择条件的序号____________;并求数列和的通项公式;(2)求和.20.(12分)设函数(I)求曲线在点处的切线方程;(II)设,若函数有三个不同零点,求c的取值范围21.(12分)已知圆,直线(1)求证:直线与圆恒有两个交点;(2)设直线与圆的两个交点为、,求的取值范围22.(10分)如图1,已知矩形ABCD,,,E,F分别为AB,CD的中点,将ABCD卷成一个圆柱,使得BC与AD重合(如图2),MNGH为圆柱的轴截面,且平面平面MNGH,NG与曲线DE交于点P(1)证明:平面平面MNGH;(2)判断平面PAE与平面PDH夹角与的大小,并说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由已知求得,再根据当时,,,可求得范围.【详解】解:因为,则,两式相减得,因为是递增数列,所以当时,,解得,又,,所以,解得,综上得,故选:B.2、A【解析】由空间向量垂直的坐标表示可求得实数的值.【详解】由已知可得,解得.故选:A.3、C【解析】对于选项A:根据偶数性质即可判断;对于选项B:通过举例即可判断,对于选项C:利用逆否命题的概念即可判断;对于选项D:根据且、或和非的关系即可判断.【详解】选项A:原命题的否命题为:若不是偶数,则,不都是偶数,若,都是偶数,则一定是偶数,从而原命题的否命题为真命题,故A错误;选项B:原命题的逆命题:若是无理数,则也为正无理数,当,即为无理数,但是有理数,故B错误;选项C:由逆否命题的概念可知,C正确;选项D:由为假命题可知,,至少有一个为假命题,由为假命题可知,和均为假命题,故为假命题,为真命题,故D错误.故选:C.4、A【解析】将“好货”与“不便宜”进行相互推理即可求得答案.【详解】根据题意,“好货”一定“不便宜”,但是“不便宜”不一定是“好货”,所以“不便宜”是“好货”的必要不充分条件.故选:A.5、B【解析】求出,可知为等腰三角形,取的中点,可得出,利用勾股定理求得,利用三角形的面积公式可求得结果.【详解】在椭圆中,,,则,所以,,由椭圆的定义可得,取的中点,因为,则,由勾股定理可得,所以,.故选:B.6、B【解析】根据题意求得,化简得到,结合,求得的值,即可求解.【详解】在中,,,,AD为BC边上的高,可得,由又因为,所以,所以.故选:B.7、B【解析】由渐近线方程,设出双曲线方程,结合与椭圆有相同的焦点,求出双曲线方程.【详解】∵双曲线:的一条渐近线方程为:∴设双曲线:∵双曲线与椭圆有相同的焦点∴,解得:∴双曲线的方程为.故选:B.8、D【解析】先由,可得,变形得,所以,化简后利用基本不等式求解即可【详解】因为、,直线,,且,所以,即,所以,所以,所以,当且仅当,即时,取等号,所以的最小值为,故选:D9、C【解析】利用含有一个量词的命题的否定的定义求解.【详解】因为命题“,是特称命题,所以其否定是全称命题,即为,故选:C10、A【解析】根据题中条件,得出数列公差,进而可求出结果.【详解】由得,所以数列是以为公差的等差数列,又,所以.故选:A.【点睛】本题主要考查等差数列的基本量运算,属于基础题型.11、B【解析】由几何概型公式求解即可.【详解】红灯持续时间为40秒,则至少需要等待18秒才出现绿灯的概率为,故选:B12、B【解析】循环体第一次运行后;第二次运行后;第三次运行后,第四次运行后;循环结束,输出值为4,答案选B考点:程序框图的功能二、填空题:本题共4小题,每小题5分,共20分。13、69【解析】由图可知,第行有个数,求出第行的最后一个数,从而可分析计算出,即可得出答案.【详解】解:由图可知,第行有个数,第行最后一个数为,因为,所以第行的最后一个数为2016,所以2021位第行,即,又,所以2021位第行第5列,即,所以.故答案为:69.14、【解析】求出切点与圆心连线的斜率后可得切线方程.【详解】因为点在圆上,故切线必垂直于切点与圆心连线,而切点与圆心连线的斜率为,故切线的斜率为,故切线方程为:即.故答案为:.15、20【解析】求出大椭圆的离心率等于小椭圆的离心率,然后求解小椭圆的长轴长【详解】在大椭圆中,,,则,.因为两椭圆扁平程度相同,所以离心率相等,所以在小椭圆中,,结合,得,所以小椭圆的长轴长为20.故填:20.【点睛】本题考查椭圆的简单性质的应用,对椭圆相似则离心率相等这一基础知识的考查16、(1)众数;平均数,中位数.(2).【解析】(1)按“众数,平均数,中位数”的公式求解.(2)由频率分布直方图得到各区间的频率,再用古典概型求解.【小问1详解】众数取频率分布直方图中最高矩形对应区间的中点75;平均数;因为,所以中位数在区间上,且中位数【小问2详解】由频率分布直方图得出在区间40,50)和90,100内的成绩样本数据分别有4个和2个,从6个样本选2个共有个结果,记事件A=“调查对象来自不同分组”,结果有所以.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)焦点,准线方程;(2)12.【解析】(1)将点A坐标代入求出,写出抛物线方程即可作答.(2)由(1)的结论求出切线l的斜率,进而求得直线AB方程,联立直线AB与抛物线C的方程,求出弦AB长及点O到直线AB距离计算作答.【小问1详解】依题意,,解得,则抛物线的方程为:,所以抛物线的焦点,准线方程为.【小问2详解】显然切线l的斜率存在,设切线l的方程为:,由消去x并整理得:,依题意得,解得,因直线,则直线AB的斜率为-1,方程为:,即,由消去x并整理得:,解得,因此有,而,则,而点到直线AB:的距离,则,所以的面积是12.18、(1)(2)(3)直线方程为4x+3y-23=0,弦长为【解析】(1)先把两个圆的方程化为标准形式,求出圆心和半径,再根据两圆的圆心距等于两圆的半径之和,求得m的值;(2)由两圆的圆心距等于两圆的半径之差为,求得m的值.(3)当m=45时,把两个圆的方程相减,可得公共弦所在的直线方程.求出第一个圆的圆心(1,3)到公共弦所在的直线的距离d,再利用弦长公式求得弦长试题解析:(1)由已知可得两个圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,两圆的圆心距d==5,两圆的半径之和为+,由两圆的半径之和为+=5,可得m=(2)由两圆的圆心距d=="5"等于两圆的半径之差为|-|,即|-|=5,可得-="5"(舍去),或-=-5,解得m=(3)当m=45时,两圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把两个圆的方程相减,可得公共弦所在的直线方程为4x+3y-23=0第一个圆的圆心(1,3)到公共弦所在的直线的距离为d==2,可得弦长为考点:1.两圆相切的位置关系;2.两圆相交的公共弦问题19、(1)选①,,;选②,,;选③,,;(2),【解析】(1)选条件①根据等比数列列出方程求出公比得通项公式,再由等差数列列出方程求出首项与公差可得通项公式,选②③与①相同的方法求数列的通项公式;(2)根据等比数列、等差数列的求和公式解计算即可.【小问1详解】选条件①:设等比数列的公比为q,,,解得或,,,.设等差数列的公差为d,,,解得,,.选条件②:设等比数列的公比为q,,,解得或,,,.设等差数列的公差为,,,解得,,选条件③:设等比数列的公比为,,,解得或,,,.设等差数列的公差为,,,解得,【小问2详解】由(1)知,,20、(1)(2)【解析】(1)由导数几何意义得切线斜率为,再根据点斜式写切线方程;(2)由函数图像可知,极大值大于零且极小值小于零,解不等式可得c的取值范围试题解析:解:(I)由,得因为,,所以曲线在点处的切线方程为(II)当时,,所以令,得,解得或与在区间上的情况如下:所以,当且时,存在,,,使得由的单调性知,当且仅当时,函数有三个不同零点21、(1)证明见解析(2)【解析】(1)根据直线的方程可得直线经过定点,而点到圆心的距离小于半径,故点在圆的内部,由此即可证明结果(2)由圆的性质可知,当过圆心时,取最大值,当和过的直径垂直时,取最小值,由此即可求出结果.【小问1详解】证明:由于直线,即令,解得,所以恒过点,所以,所以点在圆内,所以直线与圆恒有两个交点;【小问2详解】解:当过圆心时,取最大值,即圆的直径,由圆的半径,所以的最大值为;当和过的直径垂直时,取最小值,此时圆心到的距离,所以,故的最小值为综上,的取值范围.22、(1)证明见解析(2)平面PAE与平面PDH夹角大于,理由见解析【解析】(1)由面面垂直证明,然后得证平面MNGH

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论