2026届江西省萍乡市高一上数学期末质量检测试题含解析_第1页
2026届江西省萍乡市高一上数学期末质量检测试题含解析_第2页
2026届江西省萍乡市高一上数学期末质量检测试题含解析_第3页
2026届江西省萍乡市高一上数学期末质量检测试题含解析_第4页
2026届江西省萍乡市高一上数学期末质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江西省萍乡市高一上数学期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.()A.0 B.1C.6 D.2.已知,则下列选项错误的是()A. B.C.的最大值是 D.的最小值是3.若直线与圆交于两点,关于直线对称,则实数的值为()A. B.C. D.4.已知,则的值为()A. B.C. D.5.已知扇形的半径为,面积为,则这个扇形的圆心角的弧度数为()A. B.C. D.6.二次函数中,,则函数的零点个数是A.个 B.个C.个 D.无法确定7.函数与g(x)=-x+a的图象大致是A. B.C. D.8.函数的最小正周期是A. B.C. D.9.已知,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.____.12.已知函数是定义在的奇函数,则实数b的值为_________;若函数,如果对于,,使得,则实数a的取值范围是__________13.1881年英国数学家约翰·维恩发明了Venn图,用来直观表示集合之间的关系.全集,集合,的关系如图所示,其中区域Ⅰ,Ⅱ构成M,区域Ⅱ,Ⅲ构成N.若区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则实数a的取值范围是______14.已知函数,设,,若成立,则实数的最大值是_______15.正三棱柱的侧面展开图是边长为6和12的矩形,则该正三棱柱的体积是_____.16.已知,,,则有最大值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求的单调递增区间.(2)求在区间上的最大、最小值,并求出取得最值时的值.18.(1)计算:()0.5+(-3)-1÷0.75-2-;(2)设0<a<1,解关于x的不等式.19.已知函数是定义在R上的奇函数,当时,.(1)求函数在上的解析式;(2)求不等式解集.20.已知的三个顶点分别为,,.(1)求AB边上的高所在直线的方程;(2)求面积.21.已知函数为偶函数.(1)求的值;(2)求的最小值;(3)若对恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】首先根据对数的运算法则,对式子进行相应的变形、整理,求得结果即可.【详解】,故选B.【点睛】该题考查的是有关对数的运算求值问题,涉及到的知识点有对数的运算法则,熟练掌握对数的运算法则是解题的关键.2、D【解析】根据题意求出b的范围可以判断A,然后结合基本不等式判断B,C,最后消元通过二次函数的角度判断D.【详解】对A,,正确;对B,,当且仅当时取“=”,正确;对C,,当且仅当时取“=”,正确;对D,由题意,,由A可知,所以,错误.故选:D.3、A【解析】所以直线过圆的圆心,圆的圆心为,,解得.故选A.【点睛】本题给出直线与圆相交,且两个交点关于已知直线对称,求参数的值.着重考查了直线与圆的位置关系等知识,属于基础题.4、B【解析】在所求分式的分子和分母中同时除以,结合两角差的正切公式可求得结果.【详解】.故选:B.5、A【解析】由扇形的面积公式即可求解.【详解】解:设扇形圆心角的弧度数为,则扇形面积为,解得,因为,所以扇形的圆心角的弧度数为4.故选:A6、C【解析】计算得出的符号,由此可得出结论.【详解】由已知条件可得,因此,函数的零点个数为.故选:C.7、A【解析】因为直线是递减,所以可以排除选项,又因为函数单调递增时,,所以当时,,排除选项B,此时两函数的图象大致为选项,故选A.【方法点晴】本题通过对多个图象的选择考查函数的指数函数、一次函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.8、D【解析】分析:直接利用周期公式求解即可.详解:∵,,∴.故选D点睛:本题主要考查三角函数的图象与性质,属于简单题.由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.9、A【解析】化简得,再利用充分非必要条件定义判断得解.【详解】解:.因为“”是“”的充分非必要条件,所以“”是“”的充分非必要条件.故选:A10、A【解析】由图象知函数的定义域排除选项选项B、D,再根据不成立排除选项C,即可得正确选项.【详解】由图知的定义域为,排除选项B、D,又因为当时,,不符合图象,所以排除C,故选:A【点睛】思路点睛:排除法是解决函数图象问题的主要方法,根据函数的定义域、与坐标轴的交点、函数值的符号、单调性、奇偶性等,从而得出正确结果.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】本题直接运算即可得到答案.【详解】解:,故答案为:.【点睛】本题考查指数幂的运算、对数的运算,是基础题.12、①.0②.【解析】由,可得,设在的值域为,在上的值域为,根据题意转化为,根据函数的单调性求得函数和的值域,结合集合的运算,列出不等式组,即可求解.【详解】由函数是定义在的奇函数,可得,即,经检验,b=0成立,设在值域为,在上的值域为,对于,,使得,等价于,又由为奇函数,可得,当时,,,所以在的值域为,因为在上单调递增,在上单调递减,可得的最小值为,最大值为,所以函数的值域为,则,解得,即实数的取值范围为.故答案为:;.13、【解析】由,又区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则或解不等式组即可【详解】由,又区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则或解得故答案为:14、【解析】设不等式的解集为,从而得出韦达定理,由可得,要使,即不等式的解集为,则可得,以及是方程的两个根,再得出其韦达定理,比较韦达定理可得出,从而求出与的关系,代入,得出答案.【详解】,则由题意设集合,即不等式的解集为所以是方程的两个不等实数根则,则由可得,由,所以不等式的解集为所以是方程,即的两个不等实数根,所以故,,则,则,则由,即,即,解得综上可得,所以的最大值为故答案:15、或【解析】分两种情况来找三棱柱的底面积和高,再代入体积计算公式即可【详解】因为正三棱柱的侧面展开图是边长分别为6和12的矩形,所以有以下两种情况,①6是下底面的周长,12是三棱柱的高,此时,下底面的边长为2,面积为,所以正三棱柱的体积为12②12是下底面的周长,6是三棱柱的高,此时,下底面的边长为4,面积为,所以正三棱柱的体积为24,故答案为或【点睛】本题的易错点在于只求一种情况,应该注意考虑问题的全面性.分类讨论是高中数学的常考思想,在运用分类讨论思想做题时,要做到不重不漏16、4【解析】分析:直接利用基本不等式求xy的最大值.详解:因为x+y=4,所以4≥,所以故答案为4.点睛:(1)本题主要考查基本不等式,意在考查学生对该基础知识的掌握水平.(2)利用基本不等式求最值时,一定要注意“一正二定三相等”,三者缺一不可.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或时,当时【解析】分析:(1)先利用辅助角公式化简函数f(x),再利用复合函数的单调性性质求的单调递增区间.(2)利用不等式的性质和三角函数的图像和性质求在区间上的最大、最小值,并求出取得最值时的值.详解:(1),由得,∴的单调递增区间为(2)当时,当或,即或时,当即时点睛:(1)本题主要考查三角函数的单调性和区间上的最值,意在考查学生对这些基础知识的掌握水平和数形结合的思想方法.(2)对于复合函数的问题自然是利用复合函数的性质解答,求复合函数的最值,一般从复合函数的定义域入手,结合三角函数的图像一步一步地推出函数的最值.18、(1)0;(2){x|x>1}【解析】(1)根据指数幂的运算性质,化简求值;(2)利用指数函数的单调性,即可求解不等式.【详解】(1)原式(2)因为0<a<1,所以y=ax在(-∞,+∞)上为减函数,因为,所以2x2-3x+2<2x2+2x-3,解得x>1.故x的解集为{x|x>1}.19、(1)(2)【解析】(1)根据奇函数的知识求得函数在上的解析式.(2)结合函数的单调性、奇偶性求得不等式的解集.小问1详解】当时,,.所以函数在上的解析式为.【小问2详解】当时,为增函数,所以在上为增函数.由得,所以,所以,所以不等式的解集为.20、(1);(2).【解析】(1)根据高线的性质,结合互相垂直直线的斜率关系,结合直线点斜式方程进行求解即可;(2)根据点到直线距离公式、两点间距离公式、三角形面积公式进行求解即可.【小问1详解】∵,,∴AB的斜率,∴AB边高线斜率,又,∴AB边上的高线方程为,化简得.【小问2详解】直线AB的方程为,即,顶点C到直线AB的距离为,又,∴的面积.21、(1)(2)(3)【解析】(1)运用偶函数的定义和对数的运算性质,结合恒等式的性质可得所求值;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论