版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省上饶市民校联盟2026届高一上数学期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列区间包含函数零点的为()A. B.C. D.2.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息()元.(参考数据:)A.176 B.100C.77 D.883.若,则()A. B.C. D.24.若,则()A. B.C. D.5.已知函数,的最值情况为()A.有最大值,但无最小值 B.有最小值,有最大值1C.有最小值1,有最大值 D.无最大值,也无最小值6.设是两条不同的直线,是两个不同的平面,且,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则7.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.8.已知函数是上的增函数(其中且),则实数的取值范围为()A. B.C. D.9.某空间几何体的正视图是三角形,则该几何体不可能是A.圆柱 B.圆锥C.四面体 D.三棱柱10.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是()A.x1 B.x2C.x3 D.x4二、填空题:本大题共6小题,每小题5分,共30分。11.在平面四边形中,,若,则__________.12.若函数有4个零点,则实数a的取值范围为___________.13.设函数,则__________,方程的解为__________14.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bienao).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为____15.已知圆,圆,则两圆公切线的方程为__________16.函数,函数有______个零点,若函数有三个不同的零点,则实数的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设集合存在正实数,使得定义域内任意x都有.(1)若,证明;(2)若,且,求实数a的取值范围;(3)若,,且、求函数的最小值.18.如图,函数(,)的图象与y轴交于点,最小正周期是π(1)求函数的解析式;(2)已知点,点P是函数图象上一点,点是线段PA中点,且,求的值19.已知函数.(1)若不等式对于一切实数恒成立,求实数的取值范围;(2)若,解关于的不等式.20.设a>0,且a≠1,解关于x的不等式21.如图,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的余弦值;(Ⅲ)求点A到平面PCD的距离.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据零点存在定理,分别判断选项区间的端点值的正负可得答案.【详解】,,,,,又为上单调递增连续函数故选:C.2、B【解析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案【详解】由题意,某同学有压岁钱1000元,存入银行,年利率为2.25%,若在银行存放5年,可得金额为元,即利息为元,若放入微信零钱通或者支付宝的余额宝时,利率可达4.01%,若存放5年,可得金额为元,即利息为元,所以将这1000元选择合适方式存满5年,可以多获利息元,故选B【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题3、B【解析】应用倍角正余弦公式及商数关系将目标式化为,结合已知即可求值.【详解】由题意知,,故选:B.4、A【解析】利用作为分段点进行比较,从而确定正确答案.【详解】,所以.故选:A5、C【解析】利用二次函数的图象与性质,得到二次函数的单调性,即可求解最值,得到答案.【详解】由题意,函数,可得函数在区间上单调递增,所以当时,函数取得最小值,最小值为,当时,函数取得最小值,最小值为,故选C.【点睛】本题主要考查了二次函数的性质及其应用,其中解答中熟练利用二次函数的性质求解是解答的关键,着重考查了推理与计算能力,属于基础题.6、D【解析】若,则需使得平面内有直线平行于直线;若,则需使得,由此为依据进行判断即可【详解】当时,可确定平面,当时,因为,所以,所以;当平面交平面于直线时,因为,所以,则,因为,所以,因为,所以,故A错误,D正确;当时,需使得,选项B、C中均缺少判断条件,故B、C错误;故选:D【点睛】本题考查空间中直线、平面的平行关系与垂直关系的判定,考查空间想象能力7、A【解析】由题意知原命题为假命题,故命题的否定为真命题,再利用,即可得到答案.【详解】由题意可得“”是真命题,故或.故选:A.8、D【解析】利用对数函数、一次函数的性质判断的初步取值范围,再由整体的单调性建立不等式,构造函数,利用函数的单调性求解不等式,从求得的取值范围.【详解】由题意必有,可得,且,整理为.令由换底公式有,由函数为增函数,可得函数为增函数,注意到,所以由,得,即,实数a的取值范围为故选:D.9、A【解析】因为圆柱的三视图有两个矩形,一个圆,正视图不可能是三角形,而圆锥、四面体(三棱锥)、三棱柱的正视图都有可能是三角形,所以选A.考点:空间几何体的三视图.10、C【解析】观察图象可知:点x3的附近两旁的函数值都为负值,∴点x3不能用二分法求,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、##1.5【解析】设,在中,可知,在中,可得,由正弦定理,可得答案.【详解】设,在中,,,,在中,,,,,由正弦定理得:,得,.故答案为:.12、【解析】将函数转化为方程,作出的图像,结合图像分析即可.【详解】令得,作出的函数图像,如图,因为有4个零点,所以直线与的图像有4个交点,所以.故答案为:13、①.1②.4或-2【解析】(1)∵,∴(2)当时,由可得,解得;当时,由可得,解得或(舍去)故方程的解为或答案:1,或14、【解析】M﹣ABC四个面都为直角三角形,MA⊥平面ABC,MA=AB=BC=2,∴三角形的AC=2,从而可得MC=2,那么ABC内接球的半径r:可得(﹣r)2=r2+(2﹣)2解得:r=2-∵△ABC时等腰直角三角形,∴外接圆半径为AC=外接球的球心到平面ABC的距离为=1可得外接球的半径R=故得:外接球表面积为.由已知,设内切球半径为,,,内切球表面积为,外接球与内切球的表面积之和为故答案为:.点睛:本题考查了球与几何体的问题,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线,这样两条直线的交点,就是其外接球的球心.15、【解析】圆,圆心为(0,0),半径为1;圆,圆心为(4,0),半径为5.圆心距为4=5-1,故两圆内切.切点为(-1,0),圆心连线为x轴,所以两圆公切线的方程为,即.故答案.16、①.1②.【解析】(1)画出图像分析函数的零点个数(2)条件转换为有三个不同的交点求实数的取值范围问题,数形结合求解即可.【详解】(1)由题,当时,,当时,为二次函数,对称轴为,且过开口向下.故画出图像有故函数有1个零点.又有三个不同的交点则有图像有最大值为.故.故答案为:(1).1(2).【点睛】本题主要考查了数形结合求解函数零点个数与根据零点个数求参数范围的问题,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3).【解析】(1)利用判断(2),化简,通过判别式小于0,求出的范围即可(3)由,推出,得到对任意都成立,然后分离变量,通过当时,当时,分别求解最小值即可【详解】(1),(2)由,故;(3)由,即对任意都成立当时,;当时,;当时,综上:【点睛】思路点睛:本题考查函数新定义,重点是理解新定义的意义,本题第三问的关键是代入定义后转化为不等式恒成立问题,利用参变分离后求的取值范围,再根据,根据函数的单调性,讨论的取值,求得的最小值.18、(1);(2),或.【解析】(1)根据余弦型函数的最小正周期公式,结合代入法进行求解即可;(2)根据中点坐标公式,结合余弦函数的性质进行求解即可.【小问1详解】因为函数的最小正周期是π,,所以有,即,因为函数的图象与y轴交于点,所以,因为,所以,即;【小问2详解】设,即,因为点是线段PA的中点,所以有,代入,得,因为,所以,因此有,或,解得:,或.19、(1);(2)答案见解析.【解析】(1)根据给定条件利用一元二次不等式恒成立求解作答.(2)在给定条件下分类解一元二次不等式即可作答.【小问1详解】,恒成立等价于,,当时,,对一切实数不恒成立,则,此时必有,即,解得,所以实数的取值范围是.【小问2详解】依题意,因,则,当时,,解得,当时,,解得或,当时,,解得或,所以,当时,原不等式的解集为;当时,原不等式的解集为或;当时,原不等式的解集为或.20、当时,不等式的解集为;当时,不等式的解集为【解析】对进行分类讨论,结合指数函数的单调性求得不等式的解集.【详解】当时,在上递减,所以,即,解得,即不等式的解集为.当时,在上递增,所以,即,解得或,即不等式的解集为.21、(1)同解析(2)异面直线PB与CD所成的角的余弦值为.(3)点A到平面PCD的距离d=【解析】解法一:(Ⅰ)证明:在△PAD卡中PA=PD,O为AD中点,所以PO⊥AD.又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO平面PAD,所以PO⊥平面ABCD.(Ⅱ)连结BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC,有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,所以OB∥DC.由(Ⅰ)知PO⊥OB,∠PBO为锐角,所以∠PBO是异面直线PB与CD所成的角.因AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=,在Rt△POA中,因为AP=,AO=1,所以OP=1,在Rt△PBO中,PB=,cos∠PBO=,所以异面直线PB与CD所成的角的余弦值为.(Ⅲ)由(Ⅱ)得CD=OB=,在Rt△POC中,PC=,所以PC=CD=DP,S△PCD=·2=.又S△=设点A到平面PCD的距离h,由VP-ACD=VA-PCD,得S△ACD·OP=S△PCD·h,即×1×1=××h,解得h=.解法二:(Ⅰ)同解法一,(Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O-xyz.则A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小型电子产品机器人装配工艺:技术、挑战与创新发展
- 化工行业循环经济与绿色制造优化方案
- 2026年工业机器人本体制造项目可行性研究报告
- 2026年土壤采样机器人项目公司成立分析报告
- 2026年数字孪生设备监控系统项目评估报告
- 2026年太赫兹成像检测系统项目投资计划书
- 2026年智能酒品溯源系统项目可行性研究报告
- 2026年大众交通类国企主管面试题参考
- 湖北恩施学院《形势与政策》2023-2024学年第一学期期末试卷
- 2026贵州旅游产业发展集团秋招面试题及答案
- 骨干教师的成长课件
- 湿地公园运营投标方案(技术标)
- 部编版道德与法治五年级上册全册复习选择题100道汇编附答案
- 四川省遂宁市2024届高三上学期零诊考试高三理综(生物)
- 工程项目施工管理工作流程
- 房地产开发公司建立质量保证体系情况说明
- 伤口造口院内专科护士护理考核试题与答案
- JJF 1759-2019衰减校准装置校准规范
- 群文阅读把数字写进诗
- 医用设备EMC培训资料课件
- 锅炉防磨防爆工作专项检查方案
评论
0/150
提交评论