2026届陕西省汉中市南郑中学数学高二上期末调研试题含解析_第1页
2026届陕西省汉中市南郑中学数学高二上期末调研试题含解析_第2页
2026届陕西省汉中市南郑中学数学高二上期末调研试题含解析_第3页
2026届陕西省汉中市南郑中学数学高二上期末调研试题含解析_第4页
2026届陕西省汉中市南郑中学数学高二上期末调研试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届陕西省汉中市南郑中学数学高二上期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.焦点为的抛物线标准方程是()A. B.C. D.2.在等比数列中,,则的公比为()A. B.C. D.3.抛物线C:的焦点为F,P,R为C上位于F右侧的两点,若存在点Q使四边形PFRQ为正方形,则()A. B.C. D.4.直线经过两点,那么其斜率为()A. B.C. D.5.已知f(x)是定义在R上的函数,且f(2)=2,,则f(x)>x的解集是()A. B.C. D.6.在如图所示的茎叶图中,若甲组数据的众数为16,则乙组数据的平均数为()A.12 B.10C.8 D.67.已知各项均为正数且单调递减的等比数列满足、、成等差数列.其前项和为,且,则()A. B.C. D.8.以椭圆+=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是()A. B.C. D.9.中国大运河项目成功人选世界文化遗产名录,成为中国第46个世界遗产项目,随着对大运河的保护与开发,大运河已成为北京城市副中心的一张亮丽的名片,也成为众多旅游者的游览目的地.今有一旅游团乘游船从奥体公园码头出发顺流而下至漕运码头,又立即逆水返回奥体公园码头,已知游船在顺水中的速度为,在逆水中的速度为,则游船此次行程的平均速度V与的大小关系是()A. B.C. D.10.已知函数,则的值为()A. B.C.0 D.111.已知数列{}满足,则()A. B.C. D.12.已知直线:和:,若,则实数的值为()A. B.3C.-1或3 D.-1二、填空题:本题共4小题,每小题5分,共20分。13.过点与直线平行的直线的方程是________.14.在等比数列中,,则______15.若两条直线与互相垂直,则a的值为______.16.有一道楼梯共10阶,小王同学要登上这道楼梯,登楼梯时每步随机选择一步一阶或一步两阶,小王同学7步登完楼梯的概率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,出现故障时需1名工人进行维修,且每台机器是否出现故障是相互独立的,每台机器出现故障的概率为(1)若出现故障的机器台数为X,求X的分布列;(2)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障时能及时维修,都产生5万元的利润,否则将不产生利润.若该厂在雇佣维修工人时,要保证在任何时刻多台机器同时出现故障能及时进行维修的概率不小于90%,雇佣几名工人使该厂每月获利最大?18.(12分)已知函数(1)求函数单调区间;(2)函数在区间上的最小值小于零,求a的取值范围19.(12分)已知几何体中,平面平面,是边长为4的菱形,,是直角梯形,,,且(1)求证:;(2)求平面与平面所成角的余弦值20.(12分)年月初,浙江杭州、宁波、绍兴三地相继爆发新冠肺炎疫情.疫情期间口罩需求量大增,某医疗器械公司开始生产口罩,并且对所生产口罩的质量按指标测试分数进行划分,其中分数不小于的为合格品,否则为不合格品,现随机抽取件口罩进行检测,其结果如表:测试分数数量(1)根据表中数据,估计该公司生产口罩的不合格率;(2)若用分层抽样的方式按是否合格从所生产口罩中抽取件,再从这件口罩中随机抽取件,求这件口罩全是合格品的概率21.(12分)已知数列的前n项积,数列为等差数列,且,(1)求与的通项公式;(2)若,求数列的前n项和22.(10分)已知A(-3,0),B(3,0),四边形AMBN的对角线交于点D(1,0),kMA与kMB的等比中项为,直线AM,NB相交于点P.(1)求点M的轨迹C的方程;(2)若点N也在C上,点P是否在定直线上?如果是,求出该直线,如果不是,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设抛物线的方程为,根据题意,得到,即可求解.【详解】由题意,设抛物线的方程为,因为抛物线的焦点为,可得,解得,所以抛物线的方程为.故选:D.2、D【解析】利用等比数列的性质把方程都变成和有关的式子后进行求解.【详解】由等比数列的等比中项性质可得,又,所以,因,所以,所以,故选:D.3、A【解析】不妨设,不妨设,则,利用抛物线的对称性及正方形的性质列出的方程求得后可得结论【详解】如图所示,设,不妨设,则,由抛物线的对称性及正方形的性质可得,解得(正数舍去),所以故选:A4、B【解析】由两点的斜率公式可得答案.【详解】直线经过两点,则故选:B5、D【解析】构造,结合已知有在R上递增且,原不等式等价于,利用单调性求解集.【详解】令,由题设知:,即在R上递增,又,所以f(x)>x等价于,即.故选:D6、A【解析】根据众数的概念,求得的值,再根据平均数的计算公式,即可求解.【详解】由题意,甲组数据的众数为16,得,所以乙组数据的平均数为故选:A.7、C【解析】先根据,,成等差数列以及单调递减,求出公比,再由即可求出,再根据等比数列通项公式以及前项和公式即可求出.【详解】解:由,,成等差数列,得:,设的公比为,则,解得:或,又单调递减,,,解得:,数列的通项公式为:,.故选:C8、B【解析】根据椭圆的几何性质求椭圆的焦点坐标和长轴端点坐标,由此可得双曲线的a,b,c,再求双曲线的标准方程.【详解】∵椭圆的方程为+=1,∴椭圆的长轴端点坐标为,,焦点坐标为,,∴双曲线的焦点在y轴上,且a=1,c=2,∴b2=3,∴双曲线方程为,故选:B.9、A【解析】求出平均速度V,进而结合基本不等式求得答案.【详解】易知,设奥运公园码头到漕运码头之间的距离为1,则游船顺流而下的时间为,逆流而上的时间为,则平均速度,由基本不等式可得,而,当且仅当时,两个不等式都取得“=”,而根据题意,于是.故选:A.10、B【解析】对函数求导,然后将代入导数中可得结果.【详解】,则,则,故选:B11、B【解析】先将通项公式化简然后用裂项相消法求解即可.【详解】因为,.故选:B12、D【解析】利用两直线平行列式求出a值,再验证即可判断作答.【详解】因,则,解得或,当时,与重合,不符合题意,当时,,符合题意,所以实数的值为-1.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据给定条件设出所求直线方程,利用待定系数法求解即得.【详解】设与直线平行的直线的方程为,而点在直线上,于是得,解得,所以所求的直线的方程为.故答案为:14、【解析】利用等比数列性质和通项公式可求得,根据可求得结果.【详解】,又,,.故答案为:.15、4【解析】两直线斜率均存在时,两直线垂直,斜率相乘等于-1,据此即可求解.【详解】由题可知,.故答案为:4.16、【解析】由题意可分为步、步、步、步、步、步共6种情况,分别求出每种的基本事件数,再利用古典概型的概率公式计算可得;【详解】解:由题意可分为步、步、步、步、步、步共6种情况,①步:即步两阶,有种;②步:即步两阶与步一阶,有种;③步:即步两阶与步一阶,有种;④步:即步两阶与步一阶,有种;⑤步:即步两阶与步一阶,有种;⑥步:即步一阶,有种;综上可得一共有种情况,满足7步登完楼梯的有种;故7步登完楼梯的概率为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)雇佣3名【解析】(1)设出现故障的机器台数为X,由题意知,即可由二项分布求解;(2)设该厂雇佣n名工人,n可取0、1、2、3、4,先求出保证在任何时刻多台机器同时出现故障能及时进行维修的概率不小于90%需要至少3人,再分别计算3人,4人时的获利即可得解.【小问1详解】每台机器运行是否出现故障看作一次实验,在一次试验中,机器出现故障的概率为,4台机器相当于4次独立试验设出现故障的机器台数为X,则,,,,,,则X的分布列为:X01234P【小问2详解】设该厂雇佣n名工人,n可取0、1、2、3、4,设“在任何时刻多台机器同时出现故障能及时进行维修”的概率为,则:n01234P1∵,∴至少要3名工人,才能保证在任何时刻多台机器同时出现故障时能及时进行维修的概率不小于90%当该厂雇佣3名工人时,设该厂获利为Y万元,则Y的所有可能取值为17,12,,,∴Y的分布列为:Y1712P∴,∴该厂获利的均值为16.9万元当该厂雇佣4名工人时,4台机器在任何时刻同时出现故障时能及时进行维修的概率为100%,该厂获利的均值为万元∴若该厂要保证在任何时刻多台机器同时出现故障能及时进行维修的概率不小于90%时,雇佣3名工人使该厂每月获利最大18、(1)答案见解析;(2).【解析】(1)对求导并求定义域,讨论、分别判断的符号,进而确定单调区间.(2)由题设,结合(1)所得的单调性,讨论、、分别确定在给定区间上的最小值,根据最小值小于零求参数a的范围.【小问1详解】由题设,且定义域为,当,即时,在上,即在上递增;当,即时,在上,在上,所以在上递减,在上递增;【小问2详解】由(1)知:若,即时,则在上递增,故,可得;若,即时,则在上递减,在上递增,故,不合题设;若,即时,则在上递减,故,得;综上,a的取值范围.19、(1)证明见解析;(2).【解析】(1)根据菱形的性质,结合面面垂直的性质定理、线面垂直的判定定理和性质进行证明即可;(2)建立空间直角坐标系,根据空间向量夹角公式进行求解即可.【详解】(1)证明:连接,交于点,∵四边形是菱形,∴,∵平面平面,平面平面,,∴平面,∵平面,∴,又,、平面,∴平面,∵平面,∴(2)解:取的中点,连接,∵是边长为4的菱形,,∴,,以为原点,,,所在直线分别为,,轴建立如图所示的空间直角坐标系,则,,,,∴,,设平面的法向量为,则,即,令,则,,∴,同理可得,平面的一个法向量为,∴,由图知,平面与平面所成角为锐角,故平面与平面所成角余弦值为20、(1);(2).【解析】(1)由题意知分数小于的产品为不合格品,故有件,一共有件口罩,即可求出口罩的不合格率.(2)先利用分层抽样确定抽取的件口罩中合格产品和不合格产品的数量分别为件和件,再利用古典概型把所有基本事件种都列举出来,在判断件口罩全是合格品的事件有种情况,即可得到答案.【小问1详解】在抽取的件产品中,不合格的口罩有(件)所以口罩为不合格品的频率为,根据频率可估计该公司所生产口罩的不合格率为【小问2详解】由题意所抽取件口罩中不合格的件,合格的件设件合格口罩记为,件不合格口罩记为而从件口罩中抽取件,共有共种情况,这件口罩全是合格品的事件有共种情况故件口罩全是合格品的概率为21、(1),.(2).【解析】(1)由已知得,,两式相除得,由已知得,求得数列的公差为,由等差数列的通项公式可求得;(2)运用错位相减法可求得.【小问1详解】解:因为数列的前n项积,所以,所以,两式相除得,因为数列为等差数列,且,,所以,即,所以数列的公差为,所以,所以,【小问2详解】解:由(1)得,所以,,所以,所以.22、(1);(2)点P在定直线x=9上.理由见解析.【解析】(1)设点,根据两点坐标距离公式和等比数列的等比中项的应用列出方程,整理方程即可;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论