版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省吉安市一中2026届高二数学第一学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线经过两个定点,,则直线倾斜角大小是()A. B.C. D.2.椭圆中以点为中点的弦所在直线斜率为()A. B.C. D.3.已知函数,若对任意两个不等的正数,,都有恒成立,则a的取值范围为()A. B.C. D.4.设P为椭圆C:上一点,,分别为左、右焦点,且,则()A. B.C. D.5.平行直线:与:之间的距离等于()A. B.C. D.6.已知向量,,且,则的值是()A. B.C. D.7.第24届冬季奥林匹克运动会,将在2022年2月4日在中华人民共和国北京市和张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京成为奥运史上第一个举办夏季奥林匹克运动会和冬季奥林匹克运动会的城市.同时中国也成为第一个实现奥运“全满贯”(先后举办奥运会、残奥会、青奥会、冬奥会、冬残奥会)国家.根据规划,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点和短轴一端点分别向内层椭圆引切线,(如图),且两切线斜率之积等于,则椭圆的离心率为()A. B.C. D.8.某学校要从5名男教师和3名女教师中随机选出3人去支教,则抽取的3人中,女教师最多为1人的选法种数为()A.10 B.30C.40 D.469.已知数列为等比数列,则“为常数列”是“成等差数列”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件10.设函数,则()A.4 B.5C.6 D.711.过双曲线的右焦点有一条弦是左焦点,那么的周长为()A.28 B.C. D.12.下列函数中,以为最小正周期,且在上单调递减的为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过点且与直线垂直的直线方程为______14.曲线在点处的切线与坐标轴围成的三角形面积为__________.15.过圆上一点的圆的切线的一般式方程为________16.已知抛物线的顶点为O,焦点为F,动点B在C上,若点B,O,F构成一个斜三角形,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的图像在(为自然对数的底数)处取得极值.(1)求实数的值;(2)若不等式在恒成立,求的取值范围.18.(12分)等比数列的各项均为正数,且,.(1)求数列的通项公式;(2)设,求数列前项和.19.(12分)设函数(1)求在处的切线方程;(2)求在上的最大值与最小值20.(12分)已知抛物线的焦点到准线的距离为2.(1)求C的方程:(2)过C上一动点P作圆两条切线,切点分别为A,B,求四边形PAMB面积的最小值.21.(12分)设等差数列的前n项和为,已知(1)求数列通项公式;(2)设,数列的前n项和为.定义为不超过x的最大整数,例如.当时,求n的值22.(10分)已知圆的圆心在直线上,且圆经过点与点.(1)求圆的方程;(2)过点作圆的切线,求切线所在的直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由两点坐标求出斜率,再得倾斜角【详解】由已知直线的斜率为,所以倾斜角为故选:A2、A【解析】先设出弦的两端点的坐标,分别代入椭圆方程,两式相减后整理即可求得弦所在的直线的斜率【详解】设弦的两端点为,,代入椭圆得两式相减得,即,即,即,即,弦所在的直线的斜率为,故选:A3、A【解析】将已知条件转化为时恒成立,利用参数分离的方法求出a的取值范围【详解】对任意都有恒成立,则时,,当时恒成立,
,当时恒成立,,故选:A4、B【解析】根据椭圆的定义写出,再根据条件即可解得答案.【详解】根据P为椭圆C:上一点,则有,又,所以,故选:B.5、B【解析】先由两条直线平行解出,再按照平行线之间距离公式求解.【详解】,则:,即,距离为.故选:B.6、A【解析】求出向量,的坐标,利用向量数量积坐标表示即可求解.【详解】因为向量,,所以,,因为,所以,解得:,故选:A.7、B【解析】分别设内外层椭圆方程为、,进而设切线、分别为、,联立方程组整理并结合求、关于a、b、m的关系式,再结合已知得到a、b的齐次方程求离心率即可.【详解】若内层椭圆方程为,由离心率相同,可设外层椭圆方程为,∴,设切线为,切线为,∴,整理得,由知:,整理得,同理,,可得,∴,即,故.故选:B.【点睛】关键点点睛:根据内外椭圆的离心率相同设椭圆方程,并写出切线方程,联立方程结合及已知条件,得到椭圆参数的齐次方程求离心率.8、C【解析】可分为女教师0人,男教师3人和女教师1人,男教师2人两种情况,用组合数表示计算即得解【详解】女教师最多为1人即女教师为0人或者1人若女教师为0人,则男教师有3人,有种选择;若女教师为1人,则男教师2人,有种选择;故女教师最多为1人的选法种数为种故选:C9、C【解析】先考虑充分性,再考虑必要性即得解.【详解】解:如果为常数列,则成等差数列,所以“为常数列”是“成等差数列”的充分条件;等差数列,所以,所以数列为,所以数列是常数列,所以“为常数列”是“成等差数列”的必要条件.所以“为常数列”是“成等差数列”的充要条件.故选:C10、D【解析】求出函数的导数,将x=1代入即可求得答案.【详解】,故,故选:D.11、C【解析】根据双曲线方程得,,由双曲线的定义,证出,结合即可算出△的周长【详解】双曲线方程为,,根据双曲线的定义,得,,,,相加可得,,,因此△的周长,故选:C12、B【解析】A.利用正切函数的性质判断;B.作出的图象判断;C.作出的图象判断;D.作出的图象判断.【详解】A.是以为最小正周期,在上单调递增,故错误;B.如图所示:,由图象知:函数是以为最小正周期,在上单调递减,故正确;C.如图所示:,由图象知:是以为最小正周期,在上单调递增,故错误;D.如图所示:,由图象知:是以为最小正周期,在上单调递增,故错误;故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先设出与直线垂直的直线方程,再把代入进行求解.【详解】设与直线垂直的直线为,将代入得:,解得:,故所求直线方程为.故答案为:14、【解析】运用导数的几何意义进行求解即可.【详解】由,所以,而,所以切线方程为:,令,得,令,得,所以三角形的面积为:,故答案为:15、【解析】求出过切线的半径所在直线斜率,由垂直关系得切线斜率,然后得直线方程,现化为一般式【详解】圆心为,,所以切线的斜率为,切线方程为,即故答案为:【点睛】本题考查求过圆上一点的圆的切线方程,利用切线性质求得斜率后易得直线方程16、2【解析】画出简单示意图,令,根据抛物线定义可得,应用数形结合及B在C上,求目标式的值.【详解】如下图,令,直线为抛物线准线,轴,由抛物线定义知:,又且,所以,故,又,故.故答案为:2.【点睛】关键点点睛:应用抛物线的定义将转化为,再由三角函数的定义及点在抛物线上求值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由求得的值.(2)由分离常数,通过构造函数法,结合导数求得的取值范围.【小问1详解】因为,所以,因为函数的图像在点处取得极值,所以,,经检验,符合题意,所以;【小问2详解】由(1)知,,所以在恒成立,即对任意恒成立.令,则.设,易得是增函数,所以,所以,所以函数在上为增函数,则,所以.18、(1);(2).【解析】(1)根据题意求出首项和公比即可得出通项公式;(2)可得是等差数列,利用等差数列前n项和公式即可求出.【详解】解:(1)设等比数列的公比为,则,由题意得,解得,因此,;(2),则,所以,数列是等差数列,首项,记数列前项和为,则.19、(1)(2),【解析】(1)对函数求导,然后求出,,运用点斜式即可求出切线方程;(2)利用导数研究出函数在区间的单调性,即可求出函数在区间上的最大值与最小值【小问1详解】,,,所以在点处的切线方程为,即.【小问2详解】,因为,所以与同号,令则,由,得,此时为减函数,由,得,此时为增函数,则,故,在单调递增,所以,20、(1)(2)【解析】(1)根据抛物线方程求出交点坐标和准线方程,求出p即可;(2)设,利用两点坐标求距离公式求出,根据四边形PAMB的面积得到关于的二次函数,结合二次函数的性质即可得出结果.【小问1详解】因为C的焦点为,准线为,由题意得,即,因此.【小问2详解】圆M的圆心为,半径为1.由条件可知,,且,于是.设,则.当时等号成立,所以四边形PAMB面积的最小值为.21、(1)(2)10【解析】(1)由等差数列的前项和公式求得公差,可得通项公式;(2)用裂项相消法求和求得,根据新定义求得,然后分组,结合等差数列的前项和公式计算后解方程可得【小问1详解】设等差数列的公差为d,因为,则.因为,则,得.所以数列的通项公式是【小问2详解】因为,则所以.当时,因为,则.当时,因为,则.因为,则,即,即,即.因为,所以22、(1);(2)或.【解析】(1)求出线段中点,进而得到线段的垂直平分线为,与联立得交点,∴.则圆的方程可求(2)当切线斜率不存在时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全培训44号令课件
- 员工培训我能行
- 神经精神疾病诊断学
- 2.3.2YARN服务工作流程
- 云南企业安全负责人培训课件
- 个人形象提升培训课件
- 2025 小学一年级数学下册基础巩固(数的读写)课件
- 测试技术与传感器课件:电感式传感器
- 2026年商标变更专员岗位面试题库含答案
- 2026年部门副经理工作考核标准及方法
- 选词填空(试题)外研版英语五年级上册
- 露地胡萝卜秋季栽培
- 海水淡化PX能量回收装置维护说明书
- 历年天津理工大学高数期末考试试卷及答案
- 妇产科学(第9版)第二章女性生殖系统解剖
- 中医经络之-特定穴课件
- GB/T 9122-2000翻边环板式松套钢制管法兰
- GB/T 16895.6-2014低压电气装置第5-52部分:电气设备的选择和安装布线系统
- 江苏省学业水平合格性考试复习课件:中外历史纲要上册主要考点线索梳理
- 煤矿岗位安全风险辨识评估
- 小提琴协奏曲《梁祝》音乐欣赏(33)课件
评论
0/150
提交评论